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The modular curve X;(N)

For N € N, let

M(N) ={y € SLx(Z) | v =[5 1] mod N}.
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The modular curve X;(N)

For N € N, let
F1(N) = {v € SLo(Z) | v =[5 1] mod N}.

Let H* = HUQU {occ}. Then I';(N)\H® is a compact
Riemann surface.

Credit: Helena Verrill
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The modular curve X;(N)

For N € N, let

F(N)={y€eSLZ) | vy =[§3%] mod N}.
Let H* =HUQU {oc}. Then I'1(N)\H® is a compact
Riemann surface, which is the set of C-points of a nonsingular,

complete algebraic curve Xi(N) defined over Q and which has
good reduction away from N.

We call its Jacobian J;(N).
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Hecke operators

Let = [§ 9] where p € N is prime, and [ = ['1(N). The
correspondence

(FTNa ra)\H* = (ala™*NT)\H®
X1(N) X1(N)

Tp

extends to an operator on J;(N). We let T be the ring
generated by these operators for p € N prime.
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Hecke operators

Let = [§ 9] where p € N is prime, and [ = ['1(N). The
correspondence

(FTNa ra)\H* = (ala™*NT)\H®
X1(N) X1(N)

Tp

extends to an operator on J;(N). We let T be the ring
generated by these operators for p € N prime.

Besides, let To(N) = {y € SLo(Z) | v =[5 3] mod N}. Then
Fo(N)/T1(N) ~ (Z/NZ)* by [2 5] — d mod N, whence
operators (d) for d € (Z/NZ)*. Actually (d) € T.
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Newforms

Let Ny (F1(N)) C Sk(T1(N)) be the finite set of newforms.
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Newforms

Let Ny (F1(N)) C Sk(T1(N)) be the finite set of newforms.

Whenever M | N, we have
(G
Nie(F1(M) & Sk (M1 (N))

f(r)——f(t7) (t \ ﬂ) )
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Newforms

Let Ny (F1(N)) C Sk(T1(N)) be the finite set of newforms.

Forall f = q+>,.,a,q" € Ni(T1(N)),
VpeN, T,f = apf,
so that
Kr = Q(a2, a3, )
is actually a number field. Also, there exists

er : (Z/NZ)" — Kf

such that
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Newforms

Let Ny (F1(N)) C Sk(T1(N)) be the finite set of newforms.

Forall f = q+>,.,a,q" € Ni(T1(N)),
Kr = Q(a2, a3, )
is actually a number field. Also, there exists
er 1 (Z/NZ)" — K;
such that
(d)f = e¢(d)f.

For all o € Aut(Q),
f =q+Y o(an)q" € Ni(T1(N))
n>2

and Kro = K7, ef0 = 0 0 &f.

Nicolas Mascot Computing modular Galois representations



Modular Galois representations

—+00

Let f =g+ Zanq” € Ni(Mi(N)), k=2,
n=2
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Modular Galois representations

—+00

Let f =g+ Zanq” € Ni(Mi(N)), k=2,
n=2

Pick a prime [ of K¢ lying over £ € N, and let K¢ be the
[-adic completion of K.
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Modular Galois representations

—+00

Let f =g+ > anq" € Ni(T1(N)), k > 2.

n=2
Pick a prime [ of K¢ lying over £ € N, and let K¢ be the
[-adic completion of K¢.

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

Rf7[: G@ — GLQ(Kf’[),

which is unramified outside /N, and such that for all p t /N,
Rr i(Frob,) has characteristic polynomial

X% — apX +ee(p)p* Tt € Kr([X].
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Modular Galois representations

—+00

Let f = q+ Y a,q" € Ni(T2(N)), k >2.
n=2
Pick a prime [ of Kr lying over ¢ € N, and let I be its residual

field.
Theorem (Deligne, Serre, Shimura, 1971)
There exists a unique continuous Galois representation

PFI: GQ — GLQ(F[),

which is unramified outside ¢/, and such that for all p{ (N,
pr.i(Frob,) has characteristic polynomial

X? — a,X +e¢(p)p*t € F([X].
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Modular Galois representations
Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

PFL: GQ — GLz(F[),

which is unramified outside /N, and such that for all p t /N,
pr.(Frob,) has characteristic polynomial

X2 — a,X +e¢(p)p"t € F[X].

Application (Couveignes, Edixhoven, 2006)

pf can be computed in time polynomial in ¢, and a, mod [ in
time polynomial in log p.

Goal: compute pr .
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@ The Galois representation itself,
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@ The Galois representation itself,
o The field L = Q """ is a Galois number field, with
Galois group (almost) GL,(F;), whose ramification

behaviour is well-understood
~> Inverse Galois problem for GL, and PGL,, Gross's
problem, construction of very lightly ramified fields,
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@ The Galois representation itself,
o The field L = Q """ is a Galois number field, with
Galois group (almost) GL,(F;), whose ramification

behaviour is well-understood
~> Inverse Galois problem for GL, and PGL,, Gross's
problem, construction of very lightly ramified fields,

@ Fast computation of Fourier coefficients: computation of
a, mod [ = Tr pr(Frob,) in time (log p)><(P).
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Example 1

Theorem (M.)

@ The field cut out by pa 31 is the field generated by the
31°* roots of unity and by the roots of

X% — 21 x%3 4 118 x°2 + 527 x°! — 8587 x™ + 18383 x™ + 263035 x*° — 2005879 x°7 + 2416016 x* + 44283128 x> — 240474192 x>*
+84687350 x°° + 3638349286 x°2 — 12617823980 x°* — 10207265505 x° + 155175311479 x** — 196432825560 x** — 771645455342 x*7
+1482783472303 x*° + 2641351695834 x*° + 4650870173875 x** — 45480241563019 x*> — 54507672402738 x* + 501026042999912 x**
—496541492329624 x*° — 712343608491160 x*° + 5302741451178477 x** — 30548025690548139 x*7 + 34878663423629056 x*°
+288784532405339724 x*° — 874206875792459963 x** — 825384106177640249 x** + 6958723996166230970 x*
—4535708640900181166 x*' — 30017821501048367756 x™° + 56583574288118086410 x*° + 60507682456797414358 x*°
—278043951776326798765 x*7 + 87013091280485835964 x*° + 765685764124853689520 x*° — 1039521490897195574873 x**
—857609563094973739451 x** + 3508677503532089909529 x*? — 2261986657658172377618 x> — 5701736296366236274465 x*°
+13022850322612898456054 x'° — 641003473636730532862 x'° — 29939230256003209147601 x'7 + 25447129369769267020402 x'°
+36125137963345226955671 x'° — 55314588133331740131989 x** — 18703775559594899286772 x** + 43941206930666596631797 x*2
+17651378415866112635127 x'! + 10928239966752626190216 x'° — 81873964056071560411072 x° — 14246438965830190561265 x°
+128298548281018972743749 x — 50060167623901195766317 x° — 45764538130200829948820 x° + 18800719945150143916844 x*
—8179472634137717244072 x° + 62290435026572905701979 x> — 71710139962834196823306 x -+ 25842211492123062583556

(several CPU years).
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Example 1

Theorem (M.)

@ The field cut out by pa 31 is the field generated by the
31 roots of unity and by the roots of x% — 21 x% 4 ...,

@ We have the following values:

p pa31(Frob,) similar to | 7(p) mod 31
30 0
101000 4 453 [2 3] 19
1010% 4 1357 [ ol ] 13
1 13
4 1
101000 4 4351 [ 4] 8

(30s of CPU time per p).




Example 2

Let f = g+ 29 — 4¢> + O(g*) € Ns(o(5)).
The field cut out by the projective representation attached to
f mod 13 is the field generated by the roots of

XM — x13 — 26x + 39x10 + 104x° — 299x® — 195x7 + 676x° + 481x° — 156x* — 39x3 + 65x2 — 14x + 1.
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Example 2

Let f = g+ 29 — 4¢> + O(g*) € Ns(o(5)).
The field cut out by the projective representation attached to
f mod 13 is the field generated by the roots of

XM — x13 — 26x + 39x10 + 104x° — 299x® — 195x7 + 676x° + 481x° — 156x* — 39x3 + 65x2 — 14x + 1.

This polynomial and this field were not known before. Its root
discriminant is 47.816 - - -, whereas the next best known
example has root discriminant 69.939 - - - .

Conjecture (Roberts, M.)

This field is the one that has the smallest discriminant among
all the Galois number fields with Galois group PGL,(F;3).
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Explicit construction of
the representation
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The Tate module of J;(N)

When A is an Abelian variety over Q of dimension g, define
TagA= M A,
neN
a free Z,-module of rank 2g, and

VIA=TayA®z Q = Tay A®z, Q.
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The Tate module of J;(N)

When A is an Abelian variety over Q of dimension g, define
TagA= M A,

neN
a free Z,-module of rank 2g, and

VIA=TayA®z Q = Tay A®z, Q.

The action of Galois yields a representation
RAJ : GQ — Gng(Qg)

which is unramified away from ¢ and the primes of bad
reduction of A.
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The Tate module of J;(N)

The action of Galois yields a representation
Rae: Gop — Glaog(Qy)

which is unramified away from ¢ and the primes of bad
reduction of A.

Take now A = J;(N). Then V;J;(N) is actually a free
(T ® Q¢)-module of rank 2, whence

Ry vy - Gop — GL2(T ® Q)

unramified away from /N.
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The Tate module of J;(N)

The action of Galois yields a representation

Ras: Gg — GLog(Qy)

which is unramified away from ¢ and the primes of bad
reduction of A.

Take now A = J;(N). Then V;J;(N) is actually a free
(T ® Q¢)-module of rank 2, whence

Ry vy - Gop — GL2(T ® Q)

unramified away from /N.

For p 1 ¢N, the characteristic polynomial of the image of Frob,
is

Xo — TpX + p(p) € (T @ Q)[X].
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Modular Abelian varieties

For f € N>(M1(N)), let
lr={T T |Tf =0},

and define
Ar = J(N)/Is Sy (N).
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Modular Abelian varieties

For f € N>(M1(N)), let
lr={T T |Tf =0},

and define

Ar = Ji(N)/Is 1 (N).

J IfU = If, SO Afa = Af.

@ As is a simple Abelian variety defined over Q.

e dimAr = [Kr : Q).

o Kr — End(Ar) ® Q via a, — T,, e¢(d) — (d).
Indeed, K7 ~ (T/I;) @ Q.

o L(Af,s) HL (f°,s d“HZ@.

o n>1
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The decomposition of J;(/N)

Over Q, J;(N) is isogenous to

H H A?O(N/M)'

MIN feGgp\ N2 (rl(M))

So
Vi (N) ~ H H (VéAf)JO(/V/M)
M

IN feGy\ N2 (r1(l\/l))

as Gg-modules.
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The decomposition of J;(/N)

Example: N = 22
S>(M1(1)) = S»(M1(2)) = 0.

At level 11, we have one rational newform
f1=q—2¢"—q>+ O(q").
At level 22, the newforms are
fo =q+Gq° + (G — ¢ —1)g° + 0(q%)
and its Galois conjugates.
~ 8(M1(22)) = (fur(7), fua(27)) @ (Galois conjugates of f),

-~

~
Old New

J1(22) ~ A%u X Af22.

Ag, is the elliptic curve of conductor 11; Ay, is a simple
Abelian variety of dimension 4.
So genus(X1(22)) = 6.
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Recovering the modular representations

V,Ar is a Q-vector space of dimension 2[K; : Q], and actually
a free Kr ® Q,-module of rank 2.
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Recovering the modular representations

V,Ar is a Q-vector space of dimension 2[K; : Q], and actually
a free Kr ® Q,-module of rank 2.

As Kr ® Qp ~ Hllé K¥ 1, we recover the representations
Rf7[ : G@ — GL2(Kf7[)

inside Vi Ar C Vo Ji(N).
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Recovering the modular representations

V,Ar is a Q-vector space of dimension 2[K; : Q], and actually
a free Kr ® Q,-module of rank 2.

As Kr ® Qp ~ Hllé K¥ 1, we recover the representations
Rf7[ : G@ — GL2(Kf7[)

inside Vi Ar C Vo Ji(N).

In particular, if [is of degree 1, pf is afforded by

Vio= [\ Ker (T,l s — 2(f) mod [) € A(N)[(].

p
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Weight lowering

Weight-lowering theorem

Suppose £ > 5 and (1 N, and let f € N, (T1(N)) be a
newform of weight 3 < k < /. There exists a newform
f, € No(T1(CN)) of weight 2 and a prime [, | £ of Ky, such that

f mod [ = f> mod [s.
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Weight lowering

Weight-lowering theorem

Suppose £ > 5 and (1 N, and let f € N, (T1(N)) be a
newform of weight 3 < k < /. There exists a newform
f, € No(T1(CN)) of weight 2 and a prime [, | £ of Ky, such that

f mod [ = f> mod [s.

Thus py,, =~ pr,, so that we can use the same geometric
construction again. We now find pg in J1(¢/N)[{].
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Weight lowering

Thus py,, =~ pr,, so that we can use the same geometric
construction again. We now find pg in Jy(¢/N)[{].

Example
Take f = A € /\/12(r1(1)). If £ > 13, there exists

7[2 € /\/’g(l’l(é)), L, C Kf2

such that
f, mod [, = A mod ¢ in F[[q]],

so that pa g is afforded in Jy(¢)[].
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The modular curve Xy(¢N)

The condition
f mod[=f mod [,

implies that

k—2

Vx, €5(x) mod I, = x*"“e¢(x).

pr actually occurs in the Jacobian of the modular curve
Xn(¢N) attached to

() = {[25] € To(eN) | d < H)
where H = Ker(eg, mod [p) < (Z/(NZ)*.

The genus of this curve is sometimes much smaller than that
of Xi(¢N).
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Computing in
the modular Jacobian

Nicolas Mascot Computing modular Galois representations



Divisors on curves

Let X be a proper, nonsingular, absolutely integral curve of
genus g over a field K.

A divisor on X is a formal Z-linear combination of points of X.
The degree of Y,y npPis Y pox np € Z.

Divisors of degree 0 form a subgroup Div®(X) of the group
Div(X) of divisors on X.

A divisor is principal if it is the divisor (f) of a function
f € K(X)*. Principal divisors form a subgroup Ppal(X) of
Divo(X).

We define Pic®(X) = Div®(X)/ Ppal(X).
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Divisors on curves

1 — K*— K(X)* — Ppal(X) —=0
Div®(X)

Pic®(X)
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Divisors on curves

Divisors of degree 0 form a subgroup Div°(X) of the group
Div(X) of divisors on X.

A divisor is principal if it is the divisor (f) of a function
f € K(X)*. Principal divisors form a subgroup Ppal(X) of
Divo(X).

We define Pic’(X) = Div®(X)/ Ppal(X).

We have
Pic®(X)(L) ~ Jac(X)(L)

for all extensions L of K.
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The Abel-Jacobi map

Assume that K = C, and let wy, -+ ,wg be a basis of
holomorphic differentials on X.
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The Abel-Jacobi map

Assume that K = C, and let wy, -+ ,wg be a basis of
holomorphic differentials on X.

A period is a vector

A= /(w,-),-_l...g e Csg
Y

where v is a loop on X.
Peridods forms a lattice A € C#, and Jac(X)(C) ~ C&/A.
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The Abel-Jacobi map

Assume that K = C, and let wy, -+ ,wg be a basis of
holomorphic differentials on X.

A period is a vector

A= /(w,-),-_l...g e Csg
Y

where v is a loop on X.
Peridods forms a lattice A € C#, and Jac(X)(C) ~ C&/A.

If we fix O € X, we can define
Jo: X — C&/A

P
P — / (w,-),-zl...g,
o
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The Abel-Jacobi map

A period is a vector
A= /(w,—),-zl...g e C¢
v

where 7y is a loop on X.
Peridods forms a lattice A € C&, and Jac(X)(C) ~ C&/A.

If we fix O € X, we can define
Jo: X — Ct&/A

P
P — / (w,-),-zl...g,
o}

extend it additively to Div(X), and restrict it to
7:DIV(X) — C&/A

SP-P) Y [

n n P"
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The Abel-Jacobi map

If we fix O € X, we can define
Jo - X — (Cg//\

P
P /(Wi)izl---ga
o

extend it additively to Div(X), and restrict it to
7:DVO(X) — C&/A

> (P, =Py — Z/Pn(wi)le---g

n

which no longer depends on O and whose kernel is exactly
Ppal(X), whence

71 Pic®(X) = C&/A = Jac(X).
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Makdisi's algorithms: basic blocks

When D € Div(X), write

H°(D) = {f € K(X)* |(f) + D = 0} U {0}.

Lemma (Basic blocks)

o If deg Dy,deg D, > 2g + 1, then the multiplication map
H°(Dy) ® H°(D,) — H°(D; + D,)

is surjective.
o f-HD)= HO(D — (f))
o If deg D; > 2g, then

HY(D, — Dy) = {f € K(X) | - H(Dy) C H(Dy)}.
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Makdisi's algorithms: representation of elements

Fix a divisor Dy on X of degree dy > 2g + 1, and let
V - H0(3D0), V2 — H0(6D0),

whose elements are represented by multipoint evaluation, or
Taylor series (or both !)
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Makdisi's algorithms: representation of elements

Fix a divisor Dy on X of degree dy > 2g + 1, and let
V - H0(3D0), V2 — H0(6D0),

whose elements are represented by multipoint evaluation, or
Taylor series (or both !)

A point x € Jac(X) = Pic®(X) < the subspace
Wp, = V(=D,) = H°(3Dy — D) C V,
where D, > 0 is a divisor of degree dy such that
[Dy — Do) = x.
D, is not unique !
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Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).
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Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.
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Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

@ Compute
HO(3D0—D1—D2) = {f eV ’ f-VcC H0(6D0—D1—D2)}.
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Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

@ Compute
HO(3D0—D1—D2) = {f eV ’ f-VcC H0(6D0—D1—D2)}.

© Take s € H(3Dy — D; — D), so that

(S) = —3D0 + D1 + D2 + D3, some D3 2 0.
Compute Hy(6Dg — Dy — D, — D3) =s- V.

Nicolas Mascot Computing modular Galois representations



Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

@ Compute
HO(3D0—D1—D2) = {f eV ’ f-VcC H0(6D0—D1—D2)}.

© Take s € H(3Dy — D; — D), so that

(S) = —3D0 + D1 + D2 + D3, some D3 2 0.
Compute Hy(6Dg — Dy — D, — D3) =s- V.

@ Compute Wp, = H°(3Dy — D3)
={f € V| f-H(3Dy—D;—D,) C Ho(6Dy—Dy—D,—Ds)}.
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Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

@ Compute
HO(3D0—D1—D2) = {f eV ’ f-VcC H0(6D0—D1—D2)}.

© Take s € H(3Dy — D; — D), so that
(s) = —3Dy+ Dy + Dy + D3, some D3 > 0.
Compute Hy(6Dg — Dy — D, — D3) =s- V.
@ Compute Wp, = H°(3Dy — D3)
={f € V| f-H(3Dy—D;—D,) C Ho(6Dy—Dy—D,—Ds)}.

Then Wp, represents x3 € Jac(X) such that x; + x» + x5 = 0.



Makdisi's algorithms on the modular curve

Let fy € S>(M1(¢N)) be defined over Q.

We take Dy = (fo) 4 ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

s H(Dp) = 8, (T1(¢N)) @ (Ei o, Er3) C My(F1(EN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c;.
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Makdisi's algorithms on the modular curve

Let fy € S>(M1(¢N)) be defined over Q.

We take Dy = (fo) 4 ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

s H(Dp) = 8, (T1(¢N)) @ (Ei o, Er3) C My(F1(EN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c;.

We represent these forms by their g-expansion at all cusps.
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Makdisi's algorithms on the modular curve

Let fy € S>(M1(¢N)) be defined over Q.

We take Dy = (fo) 4 ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

s H(Dp) = 8, (T1(¢N)) @ (Ei o, Er3) C My(F1(EN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c;.

We represent these forms by their g-expansion at all cusps.

We then compute V = H%(3Dg) C Me(I1(¢N)) by
multiplication.
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Computation of
the representation
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From now on, we assume that f € N (I'l(N)) and [ C Ky are
such that

o degl=1,
@ /tNand k <,
@ Impr D SLy(Fy).

Nicolas Mascot Computing modular Galois representations



How does one compute such a representation ?

In order to compute pr, we first compute the number field

=Kerpr 1

L=Q = Q(x,x € V)

that it cuts out, and then the image of the Frobenius elements.
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How does one compute such a representation ?

In order to compute pr, we first compute the number field

=Kerpr 1

L=Q = Q(x,x € V)

that it cuts out, and then the image of the Frobenius elements.

o If we were dealing with an elliptic curve, we could simply
compute the division polynomial ®, € Q[X].

Nicolas Mascot Computing modular Galois representations



How does one compute such a representation ?

In order to compute pr, we first compute the number field

=Kerpr 1

L=Q = Q(x,x € V)

that it cuts out, and then the image of the Frobenius elements.

o If we were dealing with an elliptic curve, we could simply
compute the division polynomial ®, € Q[X].

@ But we are dealing with the Jacobian J;(¢), so this
approach is intractable.
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The analytic model comes in handy

In the elliptic curve case:

Abel-Jacobi 3
Algebraic model PSS Analytic model
y2=x3+ax+b C/(z®zZr)
(Weierstrass) Easy torsion
(prip?)
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The analytic model comes in handy

In the elliptic curve case:

Abel-Jacobi 3
Algebraic model PSS Analytic model
y2=x3+ax+b C/(z®zZr)
(Weierstrass) Easy torsion
(prip?)

In the modular case, we work with divisors instead of points.

Abel-Jacobi 3
Algebraic model Analytic model
Div® (X1(£N)) J(EN)(C) = C8/A
Easy to evaluate AR ~ _ - -7 Easy torsion
(S8, Pi—g0] » X, eP) T

There is no g, so we must invert 7 “by hand”.
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Goal: compute V¢ C L (¢N)[4].

@ Period lattice A of X;(¢/N)

High accuracy g-expansions, term-by-term integration

~+ analytic model of J;(¢N)

@ Approximation over C of the /-torsion
Computation of divisors D, D, € Div® (Xl(ZN)) representing a basis of
V1 C J1(EN)[E]

© Evaluation of the /-torsion _
Choice of a "well-behaved” function a: V¢ — Q

~» number field L cut out by pr |

@ Frobenius elements

Recipe to compute the image of the Frobenius at p, given p{ ¢N
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» Period lattice A of X;(¢N)

High accuracy g-expansions, term-by-term integration

~> analytic model of Ji(£N)

Approximation over C of the /-torsion

Computation of divisors D1, D> € DivO0 (Xl(/N)) representing a basis of
Vit C Ah(EN)[]

Evaluation of the /-torsion B
Choice of a “well-behaved” function a: V| — Q

~» number field L cut out by pr

Frobenius elements

Recipe to compute the image of the Frobenius at p, given pt{N

Nicolas Mascot Computing modular Galois representations



Periods of the modular curve X;(¢N)
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Periods of the modular curve X;(¢N)

Analytic model of J;(¢N)
Let wy, -+ ,wg be a basis of Q' (X (¢(N)) =~ Sy (M1(¢N)).
Integrate the differentials w;(7)d7 along the curves ;. This
yields a lattice A = <<f _w,-) > c Cs&, and

Y Isi<e  1gjcoq
5(€) = C&/A.
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Periods of the modular curve X;(¢N)

Analytic model of J;(¢N)
Let wy, -+ ,wg be a basis of Q' (X (¢(N)) =~ Sy (M1(¢N)).
Integrate the differentials w;(7)d7 along the curves ;. This
yields a lattice A = <<f _w,-) > c Cs&, and

Y Isi<e  1gjcoq
5(€) = C&/A.

These curves can be represented by modular symbols
S2(T1(¢N)) € M (T1(¢N)).
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Periods of the modular curve X;(¢N)

These curves can be represented by modular symbols
S2(T1(¢N)) € M (T1(¢N)).

Credit: W. Stein
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Explicit integration

Split the integration path, move the endpoints to oc.
~ integrals of the form

z “+o00 1 “+o00 W
. n ,
§ wne27rln’r dT — : 627rmz7
2mi £~ n

0 \n=1

which converge best for Imz > 0.

Nicolas Mascot Computing modular Galois representations



Using the Hecke-module structure

T also acts on modular symols, and integration is equivariant:

/ w:/Tw.
Tw w

So, if we have a T-generating family of symbols (w;) which are
easy to integrate along, we can compute the periods:

V= Z Tjiwi,  Tji €T,

w:/z,'—rj,fwiw:z:/w‘

N 1

/

J

Tjiw= Z/\(n,-,w)/ w.
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High precision g-expansions

+o0
Let w =Y wyq" € S,(M1(¢N)), and let B € N
n=0
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High precision g-expansions

+o0
Let w =Y wyq" € S,(M1(¢N)), and let B € N
n=0

Theorem (Manin, 1972)

Using modular symbols, the w, can be computed for n < B in
a number of bit operations which is polynomial (but at least
quadratic) in B.
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High precision g-expansions

+o0
Let w =Y wyq" € S,(M1(¢N)), and let B € N

Theorem (Manin, 1972)

Using modular symbols, the w, can be computed for n < B in
a number of bit operations which is polynomial (but at least
quadratic) in B.

Theorem (M., 2013)

The w, can be computed for n < B in O(B) bit operations.
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High precision g-expansions

“+o0o
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0

@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.
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High precision g-expansions

—+o00
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0
@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.
1 EB-E X
Q@ We use u = e = 1758 E3 Zunq the u, are easy to

compute mod p.
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High precision g-expansions

“+o0o
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0
@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.

1 EB-£B &
Q@ We use u = e = 1758 E3 Zunq the u, are easy to
compute mod p.
@ There is an equation ®(X, Y) € F,[X, Y] with known
degrees such that ®(u,w/du) = 0.
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High precision g-expansions

“+o0o
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0
@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.

1 B-B &
Q@ Weuse u=- = = 1778 E3 Z u,q", the u, are easy to
J

compute mod p.

@ There is an equation ®(X, Y) € F,[X, Y] with known
degrees such that ®(u,w/du) = 0.

@ We compute ¢ by identification in Fy[[q]].
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High precision g-expansions

“+o0o
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0
@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.

1 B-B &
Q@ Weuse u=- = = 1778 E3 Z u,q", the u, are easy to
J

compute mod p.

@ There is an equation ®(X, Y) € F,[X, Y] with known
degrees such that ®(u,w/du) = 0.

@ We compute ¢ by identification in Fy[[q]].

© From precomputed u, for n < B, we compute w by
Newton-iterating on ®(u,w/du) = 0.
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v’ Period lattice A of X;(¢N)

High accuracy g-expansions, term-by-term integration
~» analytic model of Ji(¢N)
» Approximation over C of the /-torsion
Computation of divisors Dy, D> € Div® (X1(£N)) representing a basis of
Ve C J1(EN)

Evaluation of the /-torsion B
Choice of a “well-behaved” function a: V¢ | — Q

~» number field L cut out by pr

Frobenius elements

Recipe to compute the image of the Frobenius at p, given pt{N
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V”d_ef ﬂ Ker ‘J (CN)[4]
p prime
ﬂ Ker ( ‘Jl (¢N)[4]
p<B

for B large enough.

The matrices of T, © J1(¢N)[¢] allow us to find
1
x1, %2 € L(UN)[Z](C) = (CE/N)[{] = z/\//\
which form a basis of V¢ C J(¢N)[4].
Goal: compute Dy, D, € Div® (X;(¢N)(C)) such that

[Dk] = Xk.
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Abel-Jacobi and Newton

We have a target x € C&/A, we want

()20

n n 1<i<g
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Abel-Jacobi and Newton

We have a target x € C&/A, we want

() (07

1<i<g

Fix g points Py,---, P; € Xi(¢(N)(C), and solve for
P'y,---, P’z by Newton iteration in C&.
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Abel-Jacobi and Newton

We have a target x € C&/A, we want

() (07

1<i<g

Fix g points Py,---, P; € Xi(¢(N)(C), and solve for
P'y,---, P’z by Newton iteration in C&.

Poor precision, and likely to diverge...
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Abel-Jacobi and Newton

We have a target x € C&/A, we want

g o & pr(m X
/(m) _ p(m) 2! . - =
(Serem) e s ([s) -2

n=1 n=1 1<i<g

Fix g points P(m)>"' ,P(m) € X1(/N)(C), and solve for
1 g
'Dlgm)a T ,P’ém) by Newton iteration in C&.
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Abel-Jacobi and Newton

We have a target x € C&/A, we want

g P/(m)
m m def n X
(S -rm) =S ([7a) <X

n=1 1<i<g

Fix g points P(m) P(m € X1(¢N)(C), and solve for
P’§’") P’ by Newton iteration in C8.

Proposition (Inverse function theorem)

If m> 0, then for generic me), e ,P{m), then Newton
converges to a solution with P,{(m) close to P,-(m), 1<i<g.
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Recovering ¢-torsion divisors

[D] = 2m[D(™] = [zg: 2" (P — Pn)] e L(LN)[].

~~ Use Makdisi's algorithms to double [D(™)] repeatedly.
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v’ Period lattice A of X;(¢N)

High accuracy g-expansions, term-by-term integration
~ analytic model of Ji(¢{N)
v" Approximation over C of the /-torsion
Computation of divisors D1, D> € DivO0 (Xl(/N)) representing a basis of
Vi C Jl((/\/)

» Evaluation of the /-torsion B
Choice of a “well-behaved” function a: V¢ — Q

~» number field L cut out by pr |

Frobenius elements

Recipe to compute the image of the Frobenius at p, given pt{N
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Evaluating the (-torsion

We have computed divisors D; and D, representing a basis
of Vf7[ - Jl(gN)[gl
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Evaluating the (-torsion

We have computed divisors D; and D, representing a basis
of Vf7[ - Jl(gN)[gl

Thanks to Makdisi's algorithms, we compute [Fy-linear
combinations of D; and D,
~~ divisors representing all the ¢2 points of V.
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Evaluating the (-torsion

We have computed divisors D; and D, representing a basis
of Vf7[ - Jl(gN)[E]

Thanks to Makdisi's algorithms, we compute [Fy-linear
combinations of D; and D,
~~ divisors representing all the ¢2 points of V¢ .

Proposition
Let o € Q(A(¢N)), and let
Fix)= [] (x-aD)).

De Vf’[
D#0

Then F(x) € Q[x].
For generic «, F(x) is irreducible, and its decomposition field is
—Ker py
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Classical choice of a € Q(A(¢N))
Pick £ € Q(X1(¢N)), and extend it to J (¢N) by

a: J1(EN) - C
g g
Z'Di_go — Zé(Pi) '
i=1 i=1
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Classical choice of a € Q(A(¢N))
Pick £ € Q(X1(¢N)), and extend it to J (¢N) by

a: J1(EN) - C
g g
>_Pi—g0 — > &(P)
i=1 i=1
The divisor of poles of o is

(@) = Z Ti—01©

Q pole of &

so & must be chosen with degree as small as possible.
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Classical choice of a € Q(A(¢N))
Pick £ € Q(X1(¢N)), and extend it to J (¢N) by

a: J1(EN) - C
g g
>_Pi—g0 — > &(P)
i=1 i=1
The divisor of poles of o is
(D= > T
Q pole of &

so & must be chosen with degree as small as possible.
Unfortunately,

Theorem (Abramovich, 1996)

>
deg€ < 8.
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Better choice of a € Q (4 (¢N))

Points on J;(¢N) can be written E — gO, E > 0 of degree g.
Fix an effective divisor B of degree 2g. Then

H°(B — E) = Coe.

We can thus define

a:  SH(N) --» C

E—-g0 —

where P, Q € X1(¢/N)(Q) are fixed.
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Better choice of a € Q (4 (¢N))

H°(B — E) = Coe.
We can thus define
a: SH(N) --» C

oe(P)
E-e0 42(Q)

where P, Q € X1((N)(Q) are fixed.

Proposition (M., 2012)

The divisor of poles of « is the sum of only 2 translates of ©.
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v’ Period lattice A of X;(¢N)

High accuracy g-expansions, term-by-term integration
~ analytic model of Ji(¢{N)
v" Approximation over C of the /-torsion
Computation of divisors D1, D> € DivO0 (Xl(/N)) representing a basis of
Vi C Jl(“\/)

v’ Evaluation of the ¢-torsion B
Choice of a “well-behaved” function a: Vf | — Q

~» number field L cut out by pr

» Frobenius elements

Recipe to compute the image of the Frobenius at p, given p { (N
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We have computed F(x) € Q[x] with decomposition field
L =Q" """ We know the roots of F(x) in C with high
accuracy, and the permutation action of Gal(L/Q) C GL,(IFy)
on them as well.
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We have computed F(x) € Q[x] with decomposition field

L =0Q" """, We know the roots of F(x) in C with high

accuracy, and the permutation action of Gal(L/Q) C GL,(IFy)
on them as well.

We must now compute

pr.i(Frob))

for prime p € N.
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We have computed F(x) € Q[x] with decomposition field

L =Q" """ We know the roots of F(x) in C with high

accuracy, and the permutation action of Gal(L/Q) C GL,(IFy)
on them as well.

We must now compute

pr.i(Frob))

for prime p € N.

f=q+Y a,q",  Trpei(Frob,) = a, mod L

n>2

Nicolas Mascot Computing modular Galois representations



The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

Let F(x) € Q[x] be irreducible, n = deg F(x), L C C its
decomposition field, and a; € C its roots.
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The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

Let F(x) € Q[x] be irreducible, n = deg F(x), L C C its
decomposition field, and a; € C its roots.

For almost all h(x) € Z[x],-1, the resolvents

Me(x) = H <x - Z h(a,-)a(a,-)) € Q[x],

ceC i=1
C conjugacy class of Gal(L/Q), are pairwise coprime.
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The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

For almost all h(x) € Z[x],-1, the resolvents

Me(x) = H <x - Z h(a,-)a(a,-)) € Q[x],
ceC i=1
C conjugacy class of Gal(L/Q), are pairwise coprime.

For each prime p € N such that F(x) is defined and squarefree
mod p, let

Fola] = Fy[x]/(F(x) mod p), u = Trg,ar, h(a)a” € Fp.
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The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

For almost all h(x) € Z[x],-1, the resolvents

Me(x) = H <x - Z h(a,-)a(a,-)) € Q[x],
ceC i=1
C conjugacy class of Gal(L/Q), are pairwise coprime.

For each prime p € N such that F(x) is defined and squarefree
mod p, let

Fola] = Fy[x]/(F(x) mod p), u = Trg,ar, h(a)a” € Fp.

Then Frob, € C = ' (u) = 0 mod p.
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F(x) is HUGE

Problem

The degree of F(x) is large (=~ ¢?), and its coefficients are
huge, so the coefficients of I'c(x) are huge’.

There are algorithms to reduce a polynomial, that is to say
compute another polynomial defining the same number field.
But F(x) is simply too big for them.
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The projective representation

Instead, we could consider the projective representation

PP Gal(@/Q) X5 GLy(Fy) — PGL,(Fy).
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The projective representation

Instead, we could consider the projective representation

PP Gal(@/Q) X5 GLy(Fy) — PGL,(Fy).

This corresponds to

Fproj(X) — H X — Z a(D) | € Q[X],

wePlF, giv(t]/

which is of degree ¢ 4 1 only, and can thus be reduced.
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Quotient representations

More generally, for S < F; embedded diagonally into GL,(F,),
we can consider

p°: Gal(@/Q) 25 GLy(F,) —> GLo(FF,)/S.
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Quotient representations

More generally, for S < F; embedded diagonally into GL,(F,),
we can consider

Pf 1

p°: Gal(Q/Q) == GLy(F,) — GLy(F,)/S.

Let A € GLy(FFy) such that we know its image in GLy(F,)/S
and detA. If —1 ¢ S, we can recover A.
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Quotient representations

More generally, for S < F; embedded diagonally into GL,(F,),
we can consider

Pf 1

p°: Gal(Q/Q) == GLy(F,) — GLy(F,)/S.

Let A € GLy(FFy) such that we know its image in GLy(F,)/S
and detA. If —1 ¢ S, we can recover A.

As det pr( = 5xéf_1 is known, we consider

Fi=S>S> 2571

where r = ord,(¢ — 1), and the associated Fi(x) := F>(x).
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Quotient representations

More generally, for S < F; embedded diagonally into GL,(F,),
we can consider

Pf 1

p°: Gal(Q/Q) == GLy(F,) — GLy(F,)/S.

Let A € GLy(FFy) such that we know its image in GLy(F,)/S
and detA. If —1 ¢ S, we can recover A.

As det pr( = 5)(5_1 is known, we consider

Fi=S>S> 2571

where r = ord,(¢ — 1), and the associated Fi(x) := F>(x).

We now focus on F,(x) instead of F(x).



Reduction of the polynomials

First, we can reduce Fy(x), whose degree is only ¢ + 1.
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Reduction of the polynomials

First, we can reduce Fy(x), whose degree is only ¢ + 1.
Then, we write K; = Q[x]/Fi(x), so that

K,'+1 = K,'(\/ A,‘), A,‘ S K,'.

We can inductively reduce the F;(x), by writing A; = A24; in
K,' with (5,‘ small.
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The fields

The filtration

Fp=5%2%2-25=57%-1
2 2 2

yields a tower of quadratic extensions

LG LiC---C L,
5 3 3

S.
=Kerpr!

where L; = Q
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The fields

The filtration

Fp=5%2%2-25=57%-1
2 2 2

yields a tower of quadratic extensions

LG LiC---C L,
5 3 3

S.
=Kerpr!

where L; = Q

Proposition

L=1L, Ldetp“ .
——
CQ(¢m)




Certification of the output
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Certification

We have identified the coefficients of

Fx)= [ (x—a(D)) €Qx],
D;é(ff[

beyond reasonable doubt, but this is not rigorous.
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Certification

We have identified the coefficients of

Fx)= [ (x—a(D)) €Qx],
D;é(f)’[

beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines pr ?
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Certification

We have identified the coefficients of

Fx)= [ (x—a(D)) €Qx],
D;é(f)’[

beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines pr ?

For simplicity, we will assume that f and [ are such that ¢ > 5,
N =1, and that Im pr = GLo(F)).
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Certification

We have identified the coefficients of

Fx)= [] (x—a(D)) € Qlx].

De Vf7[
D+#0

beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines pr ?

For simplicity, we will assume that f and [ are such that ¢ > 5,
N =1, and that Im pr = GLo(F)).
We must prove that

Q Galg(F) O {a(D)} is permutation-isomorphic to
GLo(F,) O F> — {0},

@ the corresponding Galois representation g is pr .



Certification

We have identified the coefficients of

Fx)= ] (x—a(D)) €Qlx,

De Vf7[
D+#0

beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines pr ?

For simplicity, we will assume that f and [ are such that ¢ > 5,
N =1, and that Im pr = GLo(F)).
We must prove that
Q Galg(F) O {«(D)} is permutation-isomorphic to
GLy(F,) O F/* — {0}
~» compute Galgy(F) with Magma,
@ the corresponding Galois representation g is pr .



Certification

We have identified the coefficients of

F(x) = H (x — (D)) € Q[x],
DEV&[
D#0
beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines ps ?

For simplicity, we will assume that f and [ are such that ¢ > 5,
N =1, and that Im pf; = GLo(F,).

We must prove that
Q Galg(F) O {a(D)} is permutation-isomorphic to
GLy(Fy) O F,* — {0}
~» compute Galg(F) with Magma,
@ the corresponding Galois representation g is pr

~> use Serre's modularity conjecture.
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Serre's modularity conjecture

Theorem (Khare+Wintenberger, 2009)
Let ¢ € Gal(Q/Q) be the complex conjugation, and let

p: Gal(Q/Q) — GLy(F,)

be an irreducible Galois representation such that
det p(c) = —1. Then there exists a newform
f e S, (F1(N,),e,) and a prime [|¢ such that

P~ Pfl

Moreover, there are explicit recipes to compute N, k, and ¢,,.
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Proof of the projective Galois group

Let x,y, z, t € P'F, be pairwise distinct. Their cross-ratio is
by definition y(t), where v € PGL,(F,) is the only element
sending (x, y, z) to (00,0, 1).
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Proof of the projective Galois group

Let x,y, z, t € P'F, be pairwise distinct. Their cross-ratio is
by definition y(t), where v € PGL,(F,) is the only element
sending (x, y, z) to (00,0, 1).

Proposition

Let v be a permutation of P'F,. Then

7 preserves cross-ratios <= vy € PGL,(Fy).
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Proof of the projective Galois group

Proposition

Let v be a permutation of P'F,. Then

7 preserves cross-ratios <= vy € PGL,(Fy).

= proj
Let <5W D 04Dcw oz(D)) . be the roots of FP(x), and
let Ay, ---, As4 be distinct integers. We compute
4
Ri(x)= ] <x - )\mﬁwm) € Z[x].
Wi, ,Wa m=1
distinct

If Ry(x) is squarefree and factors along cross-ratios, this
proves that Galg(FP) < PGLy(IF).
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Proof of the projective Galois group

We can define the unordered cross-ratio map

u: (Pl(fé)) — F,

{X7y7z7t} — ./([X’.y7z’t]) ’

. _ 2)3
where j(A) = 256%.
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Proof of the projective Galois group

We can define the unordered cross-ratio map

u: (Pl(fé)) — F,

{X7y7z7t} — ./([X’.y7z’t]) ’

. _ 2)3
where j(A) = 256%.

Theorem (M., 2016)

Q@ VI > 5, PGLy(IFy) is a maximal subgroup of Gpi(g,).
Q VI #5, v O PYF,) preserves u <= v € PGL,(F)).
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Proof of the projective Galois group

Theorem (M., 2016)

@ V/ > 5, PGLy(F,) is a maximal subgroup of Gp1(x,).
Q VI #5, v O PYF,) preserves u <= v € PGLy(Fy).

Instead of

Ry(x) = H <x — Z l/mﬁwm> € Z[x],

Wy, W
distinct

for ¢ # 5 we may use
= T (=3 5 ez
We(l}"l(f‘g)) weW

whose degree is 24 times smaller.
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Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman

2007)

Let 7: Gal(Q/Q) — PGLy(IF,) be an irreducible projective
Galois representation such that 7(c) fixes exactly two points
of P'F,. If the discriminant of the field corresponding to

7 1([§1]) is of the form +¢“+k=2 for some k > 3, then there

exists a newform f € Si(1) and a prime [|¢ such that 7 ~ p'?.

V.
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Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman

2007)

Let 7: Gal(Q/Q) — PGLy(IF,) be an irreducible projective
Galois representation such that 7(c) fixes exactly two points
of P'F,. If the discriminant of the field corresponding to

7 1([§1]) is of the form +¢“+k=2 for some k > 3, then there

exists a newform f € Si(1) and a prime [|¢ such that 7 ~ p'?.

To make sure we have the right f, we use the fact that for
prime v { Disc (FPi(x)),

a,(f)=0mod [ <= pr (Frob,) is of order 2
<= FP®(x) mod v splits into linear or
quadratic factors, and is not

completely split.



Switching to p-adics

Later on, we will need to work on p-adic numbers instead of
complex ones.
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Switching to p-adics

Later on, we will need to work on p-adic numbers instead of
complex ones.

We fix a large prime p € N such that the F;(x) are irreducible
mod p, and we will work with the roots of the F;(x) in Q,
from now on.
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Switching to p-adics

Later on, we will need to work on p-adic numbers instead of
complex ones.

We fix a large prime p € N such that the F;(x) are irreducible
mod p, and we will work with the roots of the F;(x) in Q,

from now on.

Unfortunately, we have thus thrown away the indexation of the
roots. We will have to recover it at some point.
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The higher Galois groups

For each i < r, let
o K; = Q[x]/Fi(x) the root field of F;(x),
@ L; be the splitting field of F;(x),
@ Z; the set of p-adic roots of F;(x),
e and write V; = (F,? — {0})/S..
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The higher Galois groups

For each i < r, let
o K; = Q[x]/Fi(x) the root field of F;(x),
@ L; be the splitting field of F;(x),
@ Z; the set of p-adic roots of F;(x),
e and write V; = (F,? — {0})/S..

We want to find a compatible system of isomorphisms Z; ~ V;
and GBI(L,/Q) >~ GLQ(F@)/S,
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The higher Galois groups

For each i < r, let
o K; = Q[x]/Fi(x) the root field of F;(x),
@ L; be the splitting field of F;(x),
@ Z; the set of p-adic roots of F;(x),
e and write V; = (F,? — {0})/S..

We want to find a compatible system of isomorphisms Z; ~ V;
and GBI(L,/Q) >~ GLQ(F@)/S,

For now, all we know is that

Gal(Lo/Q) ~ PGLy(F,) O P'F,.
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The Galois closures are not too big

We know that K1 = K;(1/9;) is quadratic over K;, and that
L; is the Galois closure of K;.
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The Galois closures are not too big

We know that K1 = K;(1/9;) is quadratic over K;, and that
L; is the Galois closure of K;.

It is reasonable to assume that K; = Q(6;) ~ Q[x]/di(x).

Nicolas Mascot Computing modular Galois representations



The Galois closures are not too big

We know that K1 = K;(1/9;) is quadratic over K;, and that
L; is the Galois closure of K;.

It is reasonable to assume that K; = Q(6;) ~ Q[x]/di(x).

@ We can check that L;,1/L; is at most quadratic, by
studying how

2 > 0(0)
Res, (di(x°y), di(y)) = Cst. H X2 —
o (8:)£7(5:) ( 7'(5:'))

factors over subfields of Q(y).
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The Galois closures are not too big

We know that K1 = K;(1/9;) is quadratic over K;, and that
L; is the Galois closure of K;.

It is reasonable to assume that K; = Q(6;) ~ Q[x]/di(x).

@ We can check that L;,1/L; is at most quadratic, by
studying how

2 > 0(0)
Res, (di(x°y), di(y)) = Cst. H X2 —
o (8:)£7(5:) ( 7'(5:'))

factors over subfields of Q(y).

@ We can check that L;;; # L; by finding a prime v € N
such that F;(x) splits completely mod v but F; 1(x) does
not.
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A classification theorem

Theorem (Quer, 1995)
Let i € N.

Q@ H?(PGLy(Fy), Gyi) =~ G x G, , so there are 4 central
extensions

1 — Cyi — G — PGLy(F,) — 1.

Write the corresponding normalised cocycles as 5; = 1,
Bdet, B+ and [_, and the corresponding central extensions
as Cy x PGLy(Fy), 24, PGLx(F,), 2, PGL,(F,) and

2" PGLy(TFy).
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A classification theorem

Theorem (Quer, 1995)
Let i € N.

Q@ H?(PGLy(Fy), Gyi) =~ G x G, , so there are 4 central
extensions

1 — Cyi — G — PGLy(F,) — 1.

Write the corresponding normalised cocycles as 5; = 1,

Bdet, B+ and [_, and the corresponding central extensions
as Cy x PGLy(Fy), 24, PGLx(F,), 2, PGL,(F,) and

21 PGL,(F).
@ If i =1, then for all g € PGL,(TF,) of order exactly 2,
° fi(g,g) =1,

o fdet(g,8) =1 <= g € PSLy(IFy),
° B1(g,8) =1 <= g ¢ PSLy(Fy),
° B*(gag) = _1
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A classification theorem

Theorem (Quer, 1995)
Let / € N.
Qo H2(PGL2(FZ), sz) ~GxG.
@ If i =1, then for all g € PGL,(IF,) of order exactly 2,

° fi(g,8) =1,

o faet(g,8) =1 <= g € PSLy(IFy),
o B1(g,8) =1 <= g & PSLy(IFy),
° B—(gag) =-L

C2i X PGLz(Fg))ab =~ C2i x G,
2 PGLy(F))* ~ Cyina,

(

(

(21, PGL,(F))* ~ Gy,

(2 PGLa(Fp))™ =~ Cyims x Ca.
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A classification theorem

Theorem (Quer, 1995)
Let i € N.

Q@ H?(PGLy(Fy), Gyi) =~ G x G, , so there are 4 central
extensions

1 — Cyi — G — PGLy(F,) — 1.

Write the corresponding normalised cocycles as 5; = 1,
Bdet, B+ and [_, and the corresponding central extensions
as Cy x PGLy(Fy), 24, PGLx(F,), 2, PGL,(F,) and

2" PGLy(TFy).
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A classification theorem

Theorem (Quer, 1995)
Let i € N.

Q@ H?(PGLy(Fy), Gyi) =~ G x G, , so there are 4 central
extensions

1 — Cyi — G — PGLy(F,) — 1.

Write the corresponding normalised cocycles as 5; = 1,

Bdet, B+ and [_, and the corresponding central extensions
as Cy x PGLy(Fy), 24, PGLx(F,), 2, PGL,(F,) and

21 PGL,(F).
@ If i =1, then for all g € PGL,(TF,) of order exactly 2,
° fi(g,g) =1,

o fdet(g,8) =1 <= g € PSLy(IFy),
° B1(g,8) =1 <= g ¢ PSLy(Fy),
° B*(gag) = _1
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A classification theorem

Theorem (Quer, 1995)
Let / € N.
Qo H2(PGL2(FZ), sz) ~GxG.
@ If i =1, then for all g € PGL,(IF,) of order exactly 2,

° fi(g,8) =1,

o faet(g,8) =1 <= g € PSLy(IFy),
o B1(g,8) =1 <= g & PSLy(IFy),
° B—(gag) =-L

C2i X PGLz(Fg))ab =~ C2i x G,
2 PGLy(F))* ~ Cyina,

(

(

(21, PGL,(F))* ~ Gy,

(2 PGLa(Fp))™ =~ Cyims x Ca.
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Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.
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Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

) 24etPGLy(FF¢), ¢=1mod 4,
Gal(L:/Q) ~ { 2. PGLy(F,), (= —1mod 4,
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Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

) 24etPGLy(FF¢), ¢=1mod 4,
Gal(L:/Q) ~ { 2. PGLy(F,), (= —1mod 4,

and that the same goes for GL,(FF,)/F;>.
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Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.
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Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

) 24etPGLy(FF¢), ¢=1mod 4,
Gal(L:/Q) ~ { 2. PGLy(F,), (= —1mod 4,
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Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

) 24etPGLy(FF¢), ¢=1mod 4,
Gal(L:/Q) ~ { 2. PGLy(F,), (= —1mod 4,

and that the same goes for GL,(FF,)/F;>.
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Going up and down

Since r =1 when ¢ = —1 mod 4, we now assume
/=1 mod 4.
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Going up and down

Since r =1 when ¢ = —1 mod 4, we now assume
/=1 mod 4.

Gal(L;/Q) is an extension of Gal(L;_1/Q) by C,. We prove by

induction on / that it is an extension of PGLy(FF,) by G, and
that this extension is central.
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Going up and down

Since r =1 when ¢ = —1 mod 4, we now assume
/=1 mod 4.

Gal(L;/Q) is an extension of Gal(L;_1/Q) by C,. We prove by
induction on / that it is an extension of PGLy(FF,) by G, and

that this extension is central.

We deduce from the abelianisations that

Gal(L,/Q) = GLa(F¢)/S..
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Going up and down

Since r =1 when ¢ = —1 mod 4, we now assume
/=1 mod 4.

Gal(L;/Q) is an extension of Gal(L;_1/Q) by C,. We prove by
induction on / that it is an extension of PGLy(FF,) by G, and
that this extension is central.

We deduce from the abelianisations that

Gal(L,/Q) = GLa(F¢)/S..

More generally, we see that

PGLy(F,), =0,
GaI(L,/Q) ~ GLQ(F@)/S, i 2éetPGL2(]Fg)7 O<i< r,
2 PGLy(F,), i=r.
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The action of Galois

We now know that Gal(L;/Q) ~ GL,(F,)/S; as an abstract
group, so we get Galois representations g;.

But is its action on the roots of F;(x) equivalent to
GLy(Fy)/Si O Vi ?
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The action of Galois

We now know that Gal(L;/Q) ~ GL,(F,)/S; as an abstract
group, so we get Galois representations g;.

But is its action on the roots of F;(x) equivalent to
GLy(Fy)/Si O Vi ?

By construction, the image of the stabilizer of a root of F;(x)
is conjugate to a subgroup of index 2 of [§*] < GLy(FF,)/F3?.
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The action of Galois

We now know that Gal(L;/Q) ~ GL,(F,)/S; as an abstract
group, so we get Galois representations g;.

But is its action on the roots of F;(x) equivalent to
GLy(Fy)/Si O Vi ?

By construction, the image of the stabilizer of a root of F;(x)
is conjugate to a subgroup of index 2 of [§*] < GLy(FF,)/F3?.

So it must be either
o Hy = {[’5’;] | x € F;Z} or
o H ={[s;] |y eF;?}, or
o Hy={[s,] | xy € F;*}.
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The action of Galois

By construction, the image of the stabilizer of a root of F;(x)
is conjugate to a subgroup of index 2 of [§ %] < GL,(FF,)/F;2.

So it must be either
o Hy={[5:] |x € F;?}, or
o H ={[c;] |y eF;?}, or
o Hy= {[’6;] |xyEIF}‘2}.

But
(Nethe 26 #1
g

for e & F}z, so Hy corresponds to a non-faithful action of
GLy () /2.
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The action of Galois

By construction, the image of the stabilizer of a root of F;(x)
is conjugate to a subgroup of index 2 of [§ ] < GLy(F,)/F;?.

So it must be either
o Hi={[5:]|x¢€ F;Z} or
o H,—{[53] |y € F;2}, or
o Hy={[5,]|xy € F;?}.

H; corresponds to a non-faithful action of GL,(F;)/F;?

After twisting by the automorphism A — ;= A which swaps
H; and H|, we can suppose that the stab|||zer is H;.
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Are the representations correct ?

Now we know that
GaI(F,) = GLQ(F@)/S,

in a compatible way, we get a compatible collection of
representations

o;i - G@ — GL2(IFZ)/S,

We want to show that

s,
Pr =~ Pr -
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Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our
Galois group computation, and then compute

00(Frob,) = ® € PGLy(F,)
by looking at Frob, acting on them.
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Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our
Galois group computation, and then compute

00(Frob,) = ® € PGLy(F,)
by looking at Frob, acting on them.

So o,(Frob,) = A® € GL,(F,)/S, for some unknown
A e Fy/S,.
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Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our
Galois group computation, and then compute

00(Frob,) = ® € PGLy(F,)
by looking at Frob, acting on them.

So o,(Frob,) = A® € GL,(F,)/S, for some unknown
A e Fy/S,.

Let z € Z, be a root of F,(x). We find the corresponding root
of Fo(x), then the line w € P'F, that indexes it, and we index
z by a vector v € w.
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Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our
Galois group computation, and then compute

00(Frob,) = ® € PGLy(F,)
by looking at Frob, acting on them.

So o,(Frob,) = A® € GL,(F,)/S, for some unknown
A e Fy/S,.

Let z € Z, be a root of F,(x). We find the corresponding root
of Fo(x), then the line w € P'F, that indexes it, and we index
z by a vector v € w.

Then for each A, we get a candidate indexation of Z, by V,:
Frob) z <+ (A®)"v.
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Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our

Galois group computation, and then compute
00(Frob,) = ® € PGLy(F,)

by looking at Frob, acting on them.

So o,(Frob,) = A® € GL,(F,)/S, for some unknown
A e Fy/S,.

Let z € Z, be a root of F,(x). We find the corresponding root
of Fo(x), then the line w € P'F, that indexes it, and we index
z by a vector v € w.

Then for each A, we get a candidate indexation of Z, by V,:
Frob) z <+ (A®)"v.

For each of these, we compute one coefficient of one resolvent
[c(x). All but one clash with archimedian bounds.



S
Or ~ P

Since 00 ~ Pr,1, there exists a Galois character
¢ Gal(Q/Q) — I} /S, such that

o~ Y ® pf,r[
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S
Or ~ P

Since 00 ~ Pr,1, there exists a Galois character
¢ Gal(Q/Q) — I} /S, such that

o~ Y ® pf,r[

Because of the ramification, @) must be a power of the
cyclotomic character mod /.
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S
Or ~ P

Since 00 ~ Pr,1, there exists a Galois character
¢ Gal(Q/Q) — I} /S, such that

Or ~ w ® pf,r[
Because of the ramification, @) must be a power of the

cyclotomic character mod /.

We check that
Tr o.(Frob,) € (a,(f) mod ) S,

for some small v € N such that (v) = F; and a,(f) # 0 mod [,
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Examples of results
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Example: pa 29 (genus g = 22)

p pa20(Frob,) similar to | 7(p) mod 29

-

101000 1 453 0 5] 21

101000 1 1357 0 %] 8
e

10100 4 9713 0] 11

101000 4 4351 0 2] 0

101000 1 5733 20 0] 22
19 0

101000 1 7383 ) 0

101900 4 10401 133 ] 9
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Example: Lehmer'’s conjecture

Conjecture (Lehmer, 1947)
For all n > 1, 7(n) # 0.
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Example: Lehmer'’s conjecture

Conjecture (Lehmer, 1947)
For all n > 1, 7(n) # 0.

Improvement of previous results (Bosman 2007):

p pa.20(Frob,) similar to | 7(p) mod 29
22798241520242687999 [0 2] 3
60707199950936063999 [0 19 ] 9
93433753964906495999 [0 ] 4
102797608484376575999 [0 3] 4
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Example: pf, 31 (genus g = 26)

54—27'24 n)q" € Sau(1),

141144169

4(n) € Ke,, = Q(a), a= 5
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Example: pf, 31 (genus g = 26)

p Phoats (Froby) | pha.ns (Froby) | m24(p) mod 31Z[a]
10001453 | [ ] | [ Y 4] 14 7a
0011357 || S| [ Y S 1+ 4a
10000 1 o713 | [ 2 9] | [ 9] 4+ 230
04351 | 7S] [0 8] 9+ 200
5733 | (Y o] |G 8] 3+ 180
10017383 | | § 77 | 53] 17 + 20
100 10401 | | T 2| | [ Y] 9+ 160
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Thank you !
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