Computing modular Galois representations

Nicolas Mascot

University of Warwick

CLap-CLap seminar
February 9t 2017

Nicolas Mascot Computing modular Galois representations

The modular curve X;(N)

For N € N, let

M(N) ={y € SLx(Z) | v =[5 1] mod N}.

Nicolas Mascot Computing modular Galois representations

The modular curve X;(N)

For N € N, let
F1(N) = {v € SLo(Z) | v =[5 1] mod N}.

Let H* = HUQU {occ}. Then I';(N)\H® is a compact
Riemann surface.

Credit: Helena Verrill

Nicolas Mascot Computing modular Galois representations

The modular curve X;(N)

For N € N, let

F(N)={y€eSLZ) | vy =[§3%] mod N}.
Let H* =HUQU {oc}. Then I'1(N)\H® is a compact
Riemann surface, which is the set of C-points of a nonsingular,

complete algebraic curve Xi(N) defined over Q and which has
good reduction away from N.

We call its Jacobian J;(N).

Nicolas Mascot Computing modular Galois representations

Hecke operators

Let = [§ 9] where p € N is prime, and [= ['1(N). The
correspondence

(FTNa ra)\H* = (ala™*NT)\H®
X1(N) X1(N)

Tp

extends to an operator on J;(N). We let T be the ring
generated by these operators for p € N prime.

Nicolas Mascot Computing modular Galois representations

Hecke operators

Let = [§ 9] where p € N is prime, and [= ['1(N). The
correspondence

(FTNa ra)\H* = (ala™*NT)\H®
X1(N) X1(N)

Tp

extends to an operator on J;(N). We let T be the ring
generated by these operators for p € N prime.

Besides, let To(N) = {y € SLo(Z) | v =[5 3] mod N}. Then
Fo(N)/T1(N) ~ (Z/NZ)* by [2 5] — d mod N, whence
operators (d) for d € (Z/NZ)*. Actually (d) € T.

Nicolas Mascot Computing modular Galois representations

Newforms

Let Ny (F1(N)) C Sk(T1(N)) be the finite set of newforms.

Nicolas Mascot Computing modular Galois representations

Newforms

Let Ny (F1(N)) C Sk(T1(N)) be the finite set of newforms.

Whenever M | N, we have
(G
Nie(F1(M) & Sk (M1 (N))

f(r)——f(t7) (t \ ﬂ))

Nicolas Mascot Computing modular Galois representations

Newforms

Let Ny (F1(N)) C Sk(T1(N)) be the finite set of newforms.

Forall f = q+>,.,a,q" € Ni(T1(N)),
VpeN, T,f = apf,
so that
Kr = Q(a2, a3,)
is actually a number field. Also, there exists

er : (Z/NZ)" — Kf

such that

Nicolas Mascot Computing modular Galois representations

Newforms

Let Ny (F1(N)) C Sk(T1(N)) be the finite set of newforms.

Forall f = q+>,.,a,q" € Ni(T1(N)),
Kr = Q(a2, a3,)
is actually a number field. Also, there exists
er 1 (Z/NZ)" — K;
such that
(d)f = e¢(d)f.

For all o € Aut(Q),
f =q+Y o(an)q" € Ni(T1(N))
n>2

and Kro = K7, ef0 = 0 0 &f.

Nicolas Mascot Computing modular Galois representations

Modular Galois representations

—+00

Let f =g+ Zanq” € Ni(Mi(N)), k=2,
n=2

Nicolas Mascot Computing modular Galois representations

Modular Galois representations

—+00

Let f =g+ Zanq” € Ni(Mi(N)), k=2,
n=2

Pick a prime [of K¢ lying over £ € N, and let K¢ be the
[-adic completion of K.

Nicolas Mascot Computing modular Galois representations

Modular Galois representations

—+00

Let f =g+ > anq" € Ni(T1(N)), k > 2.

n=2
Pick a prime [of K¢ lying over £ € N, and let K¢ be the
[-adic completion of K¢.

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

Rf7[: G@ — GLQ(Kf’[),

which is unramified outside /N, and such that for all p t /N,
Rr i(Frob,) has characteristic polynomial

X% — apX +ee(p)p* Tt € Kr([X].

Nicolas Mascot Computing modular Galois representations

Modular Galois representations

—+00

Let f = q+ Y a,q" € Ni(T2(N)), k >2.
n=2
Pick a prime [of Kr lying over ¢ € N, and let I be its residual

field.
Theorem (Deligne, Serre, Shimura, 1971)
There exists a unique continuous Galois representation

PFI: GQ — GLQ(F[),

which is unramified outside ¢/, and such that for all p{ (N,
pr.i(Frob,) has characteristic polynomial

X? — a,X +e¢(p)p*t € F([X].

Nicolas Mascot Computing modular Galois representations

Modular Galois representations
Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

PFL: GQ — GLz(F[),

which is unramified outside /N, and such that for all p t /N,
pr.(Frob,) has characteristic polynomial

X2 — a,X +e¢(p)p"t € F[X].

Application (Couveignes, Edixhoven, 2006)

pf can be computed in time polynomial in ¢, and a, mod [in
time polynomial in log p.

Goal: compute pr .

Nicolas Mascot Computing modular Galois representations

@ The Galois representation itself,

Nicolas Mascot Computing modular Galois representations

@ The Galois representation itself,
o The field L = Q """ is a Galois number field, with
Galois group (almost) GL,(F;), whose ramification

behaviour is well-understood
~> Inverse Galois problem for GL, and PGL,, Gross's
problem, construction of very lightly ramified fields,

Nicolas Mascot Computing modular Galois representations

@ The Galois representation itself,
o The field L = Q """ is a Galois number field, with
Galois group (almost) GL,(F;), whose ramification

behaviour is well-understood
~> Inverse Galois problem for GL, and PGL,, Gross's
problem, construction of very lightly ramified fields,

@ Fast computation of Fourier coefficients: computation of
a, mod [= Tr pr(Frob,) in time (log p)><(P).

Nicolas Mascot Computing modular Galois representations

Example 1

Theorem (M.)

@ The field cut out by pa 31 is the field generated by the
31°* roots of unity and by the roots of

X% — 21 x%3 4 118 x°2 + 527 x°! — 8587 x™ + 18383 x™ + 263035 x*° — 2005879 x°7 + 2416016 x* + 44283128 x> — 240474192 x>*
+84687350 x°° + 3638349286 x°2 — 12617823980 x°* — 10207265505 x° + 155175311479 x** — 196432825560 x** — 771645455342 x*7
+1482783472303 x*° + 2641351695834 x*° + 4650870173875 x** — 45480241563019 x*> — 54507672402738 x* + 501026042999912 x**
—496541492329624 x*° — 712343608491160 x*° + 5302741451178477 x** — 30548025690548139 x*7 + 34878663423629056 x*°
+288784532405339724 x*° — 874206875792459963 x** — 825384106177640249 x** + 6958723996166230970 x*
—4535708640900181166 x*' — 30017821501048367756 x™° + 56583574288118086410 x*° + 60507682456797414358 x*°
—278043951776326798765 x*7 + 87013091280485835964 x*° + 765685764124853689520 x*° — 1039521490897195574873 x**
—857609563094973739451 x** + 3508677503532089909529 x*? — 2261986657658172377618 x> — 5701736296366236274465 x*°
+13022850322612898456054 x'° — 641003473636730532862 x'° — 29939230256003209147601 x'7 + 25447129369769267020402 x'°
+36125137963345226955671 x'° — 55314588133331740131989 x** — 18703775559594899286772 x** + 43941206930666596631797 x*2
+17651378415866112635127 x'! + 10928239966752626190216 x'° — 81873964056071560411072 x° — 14246438965830190561265 x°
+128298548281018972743749 x — 50060167623901195766317 x° — 45764538130200829948820 x° + 18800719945150143916844 x*
—8179472634137717244072 x° + 62290435026572905701979 x> — 71710139962834196823306 x -+ 25842211492123062583556

(several CPU years).

Nicolas Mascot Computin Galois representations

Example 1

Theorem (M.)

@ The field cut out by pa 31 is the field generated by the
31 roots of unity and by the roots of x% — 21 x% 4 ...,

@ We have the following values:

p pa31(Frob,) similar to | 7(p) mod 31
30 0
101000 4 453 [2 3] 19
1010% 4 1357 [ol] 13
1 13
4 1
101000 4 4351 [4] 8

(30s of CPU time per p).

Example 2

Let f = g+ 29 — 4¢> + O(g*) € Ns(o(5)).
The field cut out by the projective representation attached to
f mod 13 is the field generated by the roots of

XM — x13 — 26x + 39x10 + 104x° — 299x® — 195x7 + 676x° + 481x° — 156x* — 39x3 + 65x2 — 14x + 1.

Nicolas Mascot Computing modular Galois representations

Example 2

Let f = g+ 29 — 4¢> + O(g*) € Ns(o(5)).
The field cut out by the projective representation attached to
f mod 13 is the field generated by the roots of

XM — x13 — 26x + 39x10 + 104x° — 299x® — 195x7 + 676x° + 481x° — 156x* — 39x3 + 65x2 — 14x + 1.

This polynomial and this field were not known before. Its root
discriminant is 47.816 - - -, whereas the next best known
example has root discriminant 69.939 - - - .

Conjecture (Roberts, M.)

This field is the one that has the smallest discriminant among
all the Galois number fields with Galois group PGL,(F;3).

Nicolas Mascot Computing modular Galois representations

Explicit construction of
the representation

Nicolas Mascot Computing modular Galois representations

The Tate module of J;(N)

When A is an Abelian variety over Q of dimension g, define
TagA= M A,
neN
a free Z,-module of rank 2g, and

VIA=TayA®z Q = Tay A®z, Q.

Nicolas Mascot Computing modular Galois representations

The Tate module of J;(N)

When A is an Abelian variety over Q of dimension g, define
TagA= M A,

neN
a free Z,-module of rank 2g, and

VIA=TayA®z Q = Tay A®z, Q.

The action of Galois yields a representation
RAJ : GQ — Gng(Qg)

which is unramified away from ¢ and the primes of bad
reduction of A.

Nicolas Mascot Computing modular Galois representations

The Tate module of J;(N)

The action of Galois yields a representation
Rae: Gop — Glaog(Qy)

which is unramified away from ¢ and the primes of bad
reduction of A.

Take now A = J;(N). Then V;J;(N) is actually a free
(T ® Q¢)-module of rank 2, whence

Ry vy - Gop — GL2(T ® Q)

unramified away from /N.

Nicolas Mascot Computing modular Galois representations

The Tate module of J;(N)

The action of Galois yields a representation

Ras: Gg — GLog(Qy)

which is unramified away from ¢ and the primes of bad
reduction of A.

Take now A = J;(N). Then V;J;(N) is actually a free
(T ® Q¢)-module of rank 2, whence

Ry vy - Gop — GL2(T ® Q)

unramified away from /N.

For p 1 ¢N, the characteristic polynomial of the image of Frob,
is

Xo — TpX + p(p) € (T @ Q)[X].

Nicolas Mascot Computing modular Galois representations

Modular Abelian varieties

For f € N>(M1(N)), let
lr={T T |Tf =0},

and define
Ar = J(N)/Is Sy (N).

Nicolas Mascot Computing modular Galois representations

Modular Abelian varieties

For f € N>(M1(N)), let
lr={T T |Tf =0},

and define

Ar = Ji(N)/Is 1 (N).

J IfU = If, SO Afa = Af.

@ As is a simple Abelian variety defined over Q.

e dimAr = [Kr : Q).

o Kr — End(Ar) ® Q via a, — T,, e¢(d) — (d).
Indeed, K7 ~ (T/I;) @ Q.

o L(Af,s) HL (f°,s d“HZ@.

o n>1

Nicolas Mascot Computing modular Galois representations

The decomposition of J;(/N)

Over Q, J;(N) is isogenous to

H H A?O(N/M)'

MIN feGgp\ N2 (rl(M))

So
Vi (N) ~ H H (VéAf)JO(/V/M)
M

IN feGy\ N2 (r1(l\/l))

as Gg-modules.

Nicolas Mascot Computing modular Galois representations

The decomposition of J;(/N)

Example: N = 22
S>(M1(1)) = S»(M1(2)) = 0.

At level 11, we have one rational newform
f1=q—2¢"—q>+ O(q").
At level 22, the newforms are
fo =q+Gq° + (G — ¢ —1)g° + 0(q%)
and its Galois conjugates.
~ 8(M1(22)) = (fur(7), fua(27)) @ (Galois conjugates of f),

-~

~
Old New

J1(22) ~ A%u X Af22.

Ag, is the elliptic curve of conductor 11; Ay, is a simple
Abelian variety of dimension 4.
So genus(X1(22)) = 6.

Nicolas Mascot Computing modular Galois representations

Recovering the modular representations

V,Ar is a Q-vector space of dimension 2[K; : Q], and actually
a free Kr ® Q,-module of rank 2.

Nicolas Mascot Computing modular Galois representations

Recovering the modular representations

V,Ar is a Q-vector space of dimension 2[K; : Q], and actually
a free Kr ® Q,-module of rank 2.

As Kr ® Qp ~ Hllé K¥ 1, we recover the representations
Rf7[: G@ — GL2(Kf7[)

inside Vi Ar C Vo Ji(N).

Nicolas Mascot Computing modular Galois representations

Recovering the modular representations

V,Ar is a Q-vector space of dimension 2[K; : Q], and actually
a free Kr ® Q,-module of rank 2.

As Kr ® Qp ~ Hllé K¥ 1, we recover the representations
Rf7[: G@ — GL2(Kf7[)

inside Vi Ar C Vo Ji(N).

In particular, if [is of degree 1, pf is afforded by

Vio= [\ Ker (T,l s — 2(f) mod [) € A(N)[(].

p

Nicolas Mascot Computing modular Galois representations

Weight lowering

Weight-lowering theorem

Suppose £ > 5 and (1 N, and let f € N, (T1(N)) be a
newform of weight 3 < k < /. There exists a newform
f, € No(T1(CN)) of weight 2 and a prime [, | £ of Ky, such that

f mod [= f> mod [s.

Nicolas Mascot Computing modular Galois representations

Weight lowering

Weight-lowering theorem

Suppose £ > 5 and (1 N, and let f € N, (T1(N)) be a
newform of weight 3 < k < /. There exists a newform
f, € No(T1(CN)) of weight 2 and a prime [, | £ of Ky, such that

f mod [= f> mod [s.

Thus py,, =~ pr,, so that we can use the same geometric
construction again. We now find pg in J1(¢/N)[{].

Nicolas Mascot Computing modular Galois representations

Weight lowering

Thus py,, =~ pr,, so that we can use the same geometric
construction again. We now find pg in Jy(¢/N)[{].

Example
Take f = A € /\/12(r1(1)). If £ > 13, there exists

7[2 € /\/’g(l’l(é)), L, C Kf2

such that
f, mod [, = A mod ¢ in F[[q]],

so that pa g is afforded in Jy(¢)[].

Nicolas Mascot Computing modular Galois representations

The modular curve Xy(¢N)

The condition
f mod[=f mod [,

implies that

k—2

Vx, €5(x) mod I, = x*"“e¢(x).

pr actually occurs in the Jacobian of the modular curve
Xn(¢N) attached to

() = {[25] € To(eN) | d < H)
where H = Ker(eg, mod [p) < (Z/(NZ)*.

The genus of this curve is sometimes much smaller than that
of Xi(¢N).

Nicolas Mascot Computing modular Galois representations

Computing in
the modular Jacobian

Nicolas Mascot Computing modular Galois representations

Divisors on curves

Let X be a proper, nonsingular, absolutely integral curve of
genus g over a field K.

A divisor on X is a formal Z-linear combination of points of X.
The degree of Y,y npPis Y pox np € Z.

Divisors of degree 0 form a subgroup Div®(X) of the group
Div(X) of divisors on X.

A divisor is principal if it is the divisor (f) of a function
f € K(X)*. Principal divisors form a subgroup Ppal(X) of
Divo(X).

We define Pic®(X) = Div®(X)/ Ppal(X).

Nicolas Mascot Computing modular Galois representations

Divisors on curves

1 — K*— K(X)* — Ppal(X) —=0
Div®(X)

Pic®(X)

Nicolas Mascot Computing modular Galois representations

Divisors on curves

Divisors of degree 0 form a subgroup Div°(X) of the group
Div(X) of divisors on X.

A divisor is principal if it is the divisor (f) of a function
f € K(X)*. Principal divisors form a subgroup Ppal(X) of
Divo(X).

We define Pic’(X) = Div®(X)/ Ppal(X).

We have
Pic®(X)(L) ~ Jac(X)(L)

for all extensions L of K.

Nicolas Mascot Computing modular Galois representations

The Abel-Jacobi map

Assume that K = C, and let wy, -+ ,wg be a basis of
holomorphic differentials on X.

Nicolas Mascot Computing modular Galois representations

The Abel-Jacobi map

Assume that K = C, and let wy, -+ ,wg be a basis of
holomorphic differentials on X.

A period is a vector

A= /(w,-),-_l...g e Csg
Y

where v is a loop on X.
Peridods forms a lattice A € C#, and Jac(X)(C) ~ C&/A.

Nicolas Mascot Computing modular Galois representations

The Abel-Jacobi map

Assume that K = C, and let wy, -+ ,wg be a basis of
holomorphic differentials on X.

A period is a vector

A= /(w,-),-_l...g e Csg
Y

where v is a loop on X.
Peridods forms a lattice A € C#, and Jac(X)(C) ~ C&/A.

If we fix O € X, we can define
Jo: X — C&/A

P
P — / (w,-),-zl...g,
o

Nicolas Mascot Computing modular Galois representations

The Abel-Jacobi map

A period is a vector
A= /(w,—),-zl...g e C¢
v

where 7y is a loop on X.
Peridods forms a lattice A € C&, and Jac(X)(C) ~ C&/A.

If we fix O € X, we can define
Jo: X — Ct&/A

P
P — / (w,-),-zl...g,
o}

extend it additively to Div(X), and restrict it to
7:DIV(X) — C&/A

SP-P) Y [

n n P"

Nicolas Mascot Computing modular Galois representations

The Abel-Jacobi map

If we fix O € X, we can define
Jo - X — (Cg//\

P
P /(Wi)izl---ga
o

extend it additively to Div(X), and restrict it to
7:DVO(X) — C&/A

> (P, =Py — Z/Pn(wi)le---g

n

which no longer depends on O and whose kernel is exactly
Ppal(X), whence

71 Pic®(X) = C&/A = Jac(X).

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: basic blocks

When D € Div(X), write

H°(D) = {f € K(X)* |(f) + D = 0} U {0}.

Lemma (Basic blocks)

o If deg Dy,deg D, > 2g + 1, then the multiplication map
H°(Dy) ® H°(D,) — H°(D; + D,)

is surjective.
o f-HD)= HO(D — (f))
o If deg D; > 2g, then

HY(D, — Dy) = {f € K(X) | - H(Dy) C H(Dy)}.

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: representation of elements

Fix a divisor Dy on X of degree dy > 2g + 1, and let
V - H0(3D0), V2 — H0(6D0),

whose elements are represented by multipoint evaluation, or
Taylor series (or both !)

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: representation of elements

Fix a divisor Dy on X of degree dy > 2g + 1, and let
V - H0(3D0), V2 — H0(6D0),

whose elements are represented by multipoint evaluation, or
Taylor series (or both !)

A point x € Jac(X) = Pic®(X) < the subspace
Wp, = V(=D,) = H°(3Dy — D) C V,
where D, > 0 is a divisor of degree dy such that
[Dy — Do) = x.
D, is not unique !

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

@ Compute
HO(3D0—D1—D2) = {f eV ’ f-VcC H0(6D0—D1—D2)}.

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

@ Compute
HO(3D0—D1—D2) = {f eV ’ f-VcC H0(6D0—D1—D2)}.

© Take s € H(3Dy — D; — D), so that

(S) = —3D0 + D1 + D2 + D3, some D3 2 0.
Compute Hy(6Dg — Dy — D, — D3) =s- V.

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

@ Compute
HO(3D0—D1—D2) = {f eV ’ f-VcC H0(6D0—D1—D2)}.

© Take s € H(3Dy — D; — D), so that

(S) = —3D0 + D1 + D2 + D3, some D3 2 0.
Compute Hy(6Dg — Dy — D, — D3) =s- V.

@ Compute Wp, = H°(3Dy — D3)
={f € V| f-H(3Dy—D;—D,) C Ho(6Dy—Dy—D,—Ds)}.

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms: group law

Let Wp,, Wp, represent two points x;, x» € Jac(X).

@ Compute H%(6Dy — D; — D,) = Wp, - Wp,.

@ Compute
HO(3D0—D1—D2) = {f eV ’ f-VcC H0(6D0—D1—D2)}.

© Take s € H(3Dy — D; — D), so that
(s) = —3Dy+ Dy + Dy + D3, some D3 > 0.
Compute Hy(6Dg — Dy — D, — D3) =s- V.
@ Compute Wp, = H°(3Dy — D3)
={f € V| f-H(3Dy—D;—D,) C Ho(6Dy—Dy—D,—Ds)}.

Then Wp, represents x3 € Jac(X) such that x; + x» + x5 = 0.

Makdisi's algorithms on the modular curve

Let fy € S>(M1(¢N)) be defined over Q.

We take Dy = (fo) 4 ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

s H(Dp) = 8, (T1(¢N)) @ (Ei o, Er3) C My(F1(EN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c;.

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms on the modular curve

Let fy € S>(M1(¢N)) be defined over Q.

We take Dy = (fo) 4 ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

s H(Dp) = 8, (T1(¢N)) @ (Ei o, Er3) C My(F1(EN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c;.

We represent these forms by their g-expansion at all cusps.

Nicolas Mascot Computing modular Galois representations

Makdisi's algorithms on the modular curve

Let fy € S>(M1(¢N)) be defined over Q.

We take Dy = (fo) 4 ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

s H(Dp) = 8, (T1(¢N)) @ (Ei o, Er3) C My(F1(EN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c;.

We represent these forms by their g-expansion at all cusps.

We then compute V = H%(3Dg) C Me(I1(¢N)) by
multiplication.

Nicolas Mascot Computing modular Galois representations

Computation of
the representation

Nicolas Mascot Computing modular Galois representations

From now on, we assume that f € N (I'l(N)) and [C Ky are
such that

o degl=1,
@ /tNand k <,
@ Impr D SLy(Fy).

Nicolas Mascot Computing modular Galois representations

How does one compute such a representation ?

In order to compute pr, we first compute the number field

=Kerpr 1

L=Q = Q(x,x € V)

that it cuts out, and then the image of the Frobenius elements.

Nicolas Mascot Computing modular Galois representations

How does one compute such a representation ?

In order to compute pr, we first compute the number field

=Kerpr 1

L=Q = Q(x,x € V)

that it cuts out, and then the image of the Frobenius elements.

o If we were dealing with an elliptic curve, we could simply
compute the division polynomial ®, € Q[X].

Nicolas Mascot Computing modular Galois representations

How does one compute such a representation ?

In order to compute pr, we first compute the number field

=Kerpr 1

L=Q = Q(x,x € V)

that it cuts out, and then the image of the Frobenius elements.

o If we were dealing with an elliptic curve, we could simply
compute the division polynomial ®, € Q[X].

@ But we are dealing with the Jacobian J;(¢), so this
approach is intractable.

Nicolas Mascot Computing modular Galois representations

The analytic model comes in handy

In the elliptic curve case:

Abel-Jacobi 3
Algebraic model PSS Analytic model
y2=x3+ax+b C/(z®zZr)
(Weierstrass) Easy torsion
(prip?)

Nicolas Mascot Computing modular Galois representations

The analytic model comes in handy

In the elliptic curve case:

Abel-Jacobi 3
Algebraic model PSS Analytic model
y2=x3+ax+b C/(z®zZr)
(Weierstrass) Easy torsion
(prip?)

In the modular case, we work with divisors instead of points.

Abel-Jacobi 3
Algebraic model Analytic model
Div® (X1(£N)) J(EN)(C) = C8/A
Easy to evaluate AR ~ _ - -7 Easy torsion
(S8, Pi—g0] » X, eP) T

There is no g, so we must invert 7 “by hand”.

Nicolas Mascot Computing modular Galois representations

Goal: compute V¢ C L (¢N)[4].

@ Period lattice A of X;(¢/N)

High accuracy g-expansions, term-by-term integration

~+ analytic model of J;(¢N)

@ Approximation over C of the /-torsion
Computation of divisors D, D, € Div® (Xl(ZN)) representing a basis of
V1 C J1(EN)[E]

© Evaluation of the /-torsion _
Choice of a "well-behaved” function a: V¢ — Q

~» number field L cut out by pr |

@ Frobenius elements

Recipe to compute the image of the Frobenius at p, given p{ ¢N

Nicolas Mascot Computing modular Galois representations

» Period lattice A of X;(¢N)

High accuracy g-expansions, term-by-term integration

~> analytic model of Ji(£N)

Approximation over C of the /-torsion

Computation of divisors D1, D> € DivO0 (Xl(/N)) representing a basis of
Vit C Ah(EN)[]

Evaluation of the /-torsion B
Choice of a “well-behaved” function a: V| — Q

~» number field L cut out by pr

Frobenius elements

Recipe to compute the image of the Frobenius at p, given pt{N

Nicolas Mascot Computing modular Galois representations

Periods of the modular curve X;(¢N)

Nicolas Mascot Computing modular Galois representations

Periods of the modular curve X;(¢N)

Analytic model of J;(¢N)
Let wy, -+ ,wg be a basis of Q' (X (¢(N)) =~ Sy (M1(¢N)).
Integrate the differentials w;(7)d7 along the curves ;. This
yields a lattice A = <<f _w,-) > c Cs&, and

Y Isi<e 1gjcoq
5(€) = C&/A.

Nicolas Mascot Computing modular Galois representations

Periods of the modular curve X;(¢N)

Analytic model of J;(¢N)
Let wy, -+ ,wg be a basis of Q' (X (¢(N)) =~ Sy (M1(¢N)).
Integrate the differentials w;(7)d7 along the curves ;. This
yields a lattice A = <<f _w,-) > c Cs&, and

Y Isi<e 1gjcoq
5(€) = C&/A.

These curves can be represented by modular symbols
S2(T1(¢N)) € M (T1(¢N)).

Nicolas Mascot Computing modular Galois representations

Periods of the modular curve X;(¢N)

These curves can be represented by modular symbols
S2(T1(¢N)) € M (T1(¢N)).

Credit: W. Stein

Nicolas Mascot Computing modular Galois representations

Explicit integration

Split the integration path, move the endpoints to oc.
~ integrals of the form

z “+o00 1 “+o00 W
. n ,
§ wne27rln’r dT — : 627rmz7
2mi £~ n

0 \n=1

which converge best for Imz > 0.

Nicolas Mascot Computing modular Galois representations

Using the Hecke-module structure

T also acts on modular symols, and integration is equivariant:

/ w:/Tw.
Tw w

So, if we have a T-generating family of symbols (w;) which are
easy to integrate along, we can compute the periods:

V= Z Tjiwi, Tji €T,

w:/z,'—rj,fwiw:z:/w‘

N 1

/

J

Tjiw= Z/\(n,-,w)/ w.

Nicolas Mascot Computing modular Galois representations

High precision g-expansions

+o0
Let w =Y wyq" € S,(M1(¢N)), and let B € N
n=0

Nicolas Mascot Computing modular Galois representations

High precision g-expansions

+o0
Let w =Y wyq" € S,(M1(¢N)), and let B € N
n=0

Theorem (Manin, 1972)

Using modular symbols, the w, can be computed for n < B in
a number of bit operations which is polynomial (but at least
quadratic) in B.

Nicolas Mascot Computing modular Galois representations

High precision g-expansions

+o0
Let w =Y wyq" € S,(M1(¢N)), and let B € N

Theorem (Manin, 1972)

Using modular symbols, the w, can be computed for n < B in
a number of bit operations which is polynomial (but at least
quadratic) in B.

Theorem (M., 2013)

The w, can be computed for n < B in O(B) bit operations.

Nicolas Mascot Computing modular Galois representations

High precision g-expansions

“+o0o
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0

@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.

Nicolas Mascot Computing modular Galois representations

High precision g-expansions

—+o00
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0
@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.
1 EB-E X
Q@ We use u = e = 1758 E3 Zunq the u, are easy to

compute mod p.

Nicolas Mascot Computing modular Galois representations

High precision g-expansions

“+o0o
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0
@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.

1 EB-£B &
Q@ We use u = e = 1758 E3 Zunq the u, are easy to
compute mod p.
@ There is an equation ®(X, Y) € F,[X, Y] with known
degrees such that ®(u,w/du) = 0.

Nicolas Mascot Computing modular Galois representations

High precision g-expansions

“+o0o
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0
@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.

1 B-B &
Q@ Weuse u=- = = 1778 E3 Z u,q", the u, are easy to
J

compute mod p.

@ There is an equation ®(X, Y) € F,[X, Y] with known
degrees such that ®(u,w/du) = 0.

@ We compute ¢ by identification in Fy[[q]].

Nicolas Mascot Computing modular Galois representations

High precision g-expansions

“+o0o
Let w = anq” €S, (Fl(éN)), and let B € N.
n=0
@ Bounds are known on the w, ~» we compute w, mod p,
with p | p a large enough prime.

1 B-B &
Q@ Weuse u=- = = 1778 E3 Z u,q", the u, are easy to
J

compute mod p.

@ There is an equation ®(X, Y) € F,[X, Y] with known
degrees such that ®(u,w/du) = 0.

@ We compute ¢ by identification in Fy[[q]].

© From precomputed u, for n < B, we compute w by
Newton-iterating on ®(u,w/du) = 0.

Nicolas Mascot Computing modular Galois representations

v’ Period lattice A of X;(¢N)

High accuracy g-expansions, term-by-term integration
~» analytic model of Ji(¢N)
» Approximation over C of the /-torsion
Computation of divisors Dy, D> € Div® (X1(£N)) representing a basis of
Ve C J1(EN)

Evaluation of the /-torsion B
Choice of a “well-behaved” function a: V¢ | — Q

~» number field L cut out by pr

Frobenius elements

Recipe to compute the image of the Frobenius at p, given pt{N

Nicolas Mascot Computing modular Galois representations

V”d_ef ﬂ Ker ‘J (CN)[4]
p prime
ﬂ Ker (‘Jl (¢N)[4]
p<B

for B large enough.

The matrices of T, © J1(¢N)[¢] allow us to find
1
x1, %2 € L(UN)[Z](C) = (CE/N)[{] = z/\//\
which form a basis of V¢ C J(¢N)[4].
Goal: compute Dy, D, € Div® (X;(¢N)(C)) such that

[Dk] = Xk.
Nicolas Mascot Computing modular Galois representations

Abel-Jacobi and Newton

We have a target x € C&/A, we want

()20

n n 1<i<g

Nicolas Mascot Computing modular Galois representations

Abel-Jacobi and Newton

We have a target x € C&/A, we want

() (07

1<i<g

Fix g points Py,---, P; € Xi(¢(N)(C), and solve for
P'y,---, P’z by Newton iteration in C&.

Nicolas Mascot Computing modular Galois representations

Abel-Jacobi and Newton

We have a target x € C&/A, we want

() (07

1<i<g

Fix g points Py,---, P; € Xi(¢(N)(C), and solve for
P'y,---, P’z by Newton iteration in C&.

Poor precision, and likely to diverge...

Nicolas Mascot Computing modular Galois representations

Abel-Jacobi and Newton

We have a target x € C&/A, we want

g o & pr(m X
/(m) _ p(m) 2! . - =
(Serem) e s ([s) -2

n=1 n=1 1<i<g

Fix g points P(m)>"' ,P(m) € X1(/N)(C), and solve for
1 g
'Dlgm)a T ,P’ém) by Newton iteration in C&.

Nicolas Mascot Computing modular Galois representations

Abel-Jacobi and Newton

We have a target x € C&/A, we want

g P/(m)
m m def n X
(S -rm) =S ([7a) <X

n=1 1<i<g

Fix g points P(m) P(m € X1(¢N)(C), and solve for
P’§’") P’ by Newton iteration in C8.

Proposition (Inverse function theorem)

If m> 0, then for generic me), e ,P{m), then Newton
converges to a solution with P,{(m) close to P,-(m), 1<i<g.

Nicolas Mascot Computing modular Galois representations

Recovering ¢-torsion divisors

[D] = 2m[D(™] = [zg: 2" (P — Pn)] e L(LN)[].

~~ Use Makdisi's algorithms to double [D(™)] repeatedly.

Nicolas Mascot Computing modular Galois representations

v’ Period lattice A of X;(¢N)

High accuracy g-expansions, term-by-term integration
~ analytic model of Ji(¢{N)
v" Approximation over C of the /-torsion
Computation of divisors D1, D> € DivO0 (Xl(/N)) representing a basis of
Vi C Jl((/\/)

» Evaluation of the /-torsion B
Choice of a “well-behaved” function a: V¢ — Q

~» number field L cut out by pr |

Frobenius elements

Recipe to compute the image of the Frobenius at p, given pt{N

Nicolas Mascot Computing modular Galois representations

Evaluating the (-torsion

We have computed divisors D; and D, representing a basis
of Vf7[- Jl(gN)[gl

Nicolas Mascot Computing modular Galois representations

Evaluating the (-torsion

We have computed divisors D; and D, representing a basis
of Vf7[- Jl(gN)[gl

Thanks to Makdisi's algorithms, we compute [Fy-linear
combinations of D; and D,
~~ divisors representing all the ¢2 points of V.

Nicolas Mascot Computing modular Galois representations

Evaluating the (-torsion

We have computed divisors D; and D, representing a basis
of Vf7[- Jl(gN)[E]

Thanks to Makdisi's algorithms, we compute [Fy-linear
combinations of D; and D,
~~ divisors representing all the ¢2 points of V¢ .

Proposition
Let o € Q(A(¢N)), and let
Fix)= [] (x-aD)).

De Vf’[
D#0

Then F(x) € Q[x].
For generic «, F(x) is irreducible, and its decomposition field is
—Ker py

Nicolas Mascot Computing modular Galois representations

Classical choice of a € Q(A(¢N))
Pick £ € Q(X1(¢N)), and extend it to J (¢N) by

a: J1(EN) - C
g g
Z'Di_go — Zé(Pi) '
i=1 i=1

Nicolas Mascot Computing modular Galois representations

Classical choice of a € Q(A(¢N))
Pick £ € Q(X1(¢N)), and extend it to J (¢N) by

a: J1(EN) - C
g g
>_Pi—g0 — > &(P)
i=1 i=1
The divisor of poles of o is

(@) = Z Ti—01©

Q pole of &

so & must be chosen with degree as small as possible.

Nicolas Mascot Computing modular Galois representations

Classical choice of a € Q(A(¢N))
Pick £ € Q(X1(¢N)), and extend it to J (¢N) by

a: J1(EN) - C
g g
>_Pi—g0 — > &(P)
i=1 i=1
The divisor of poles of o is
(D= > T
Q pole of &

so & must be chosen with degree as small as possible.
Unfortunately,

Theorem (Abramovich, 1996)

>
deg€ < 8.
Nicolas Mascot Computing modular Galois representations

Better choice of a € Q (4 (¢N))

Points on J;(¢N) can be written E — gO, E > 0 of degree g.
Fix an effective divisor B of degree 2g. Then

H°(B — E) = Coe.

We can thus define

a: SH(N) --» C

E—-g0 —

where P, Q € X1(¢/N)(Q) are fixed.

Nicolas Mascot Computing modular Galois representations

Better choice of a € Q (4 (¢N))

H°(B — E) = Coe.
We can thus define
a: SH(N) --» C

oe(P)
E-e0 42(Q)

where P, Q € X1((N)(Q) are fixed.

Proposition (M., 2012)

The divisor of poles of « is the sum of only 2 translates of ©.

Nicolas Mascot Computing modular Galois representations

v’ Period lattice A of X;(¢N)

High accuracy g-expansions, term-by-term integration
~ analytic model of Ji(¢{N)
v" Approximation over C of the /-torsion
Computation of divisors D1, D> € DivO0 (Xl(/N)) representing a basis of
Vi C Jl(“\/)

v’ Evaluation of the ¢-torsion B
Choice of a “well-behaved” function a: Vf | — Q

~» number field L cut out by pr

» Frobenius elements

Recipe to compute the image of the Frobenius at p, given p { (N

Nicolas Mascot Computing modular Galois representations

We have computed F(x) € Q[x] with decomposition field
L =Q" """ We know the roots of F(x) in C with high
accuracy, and the permutation action of Gal(L/Q) C GL,(IFy)
on them as well.

Nicolas Mascot Computing modular Galois representations

We have computed F(x) € Q[x] with decomposition field

L =0Q" """, We know the roots of F(x) in C with high

accuracy, and the permutation action of Gal(L/Q) C GL,(IFy)
on them as well.

We must now compute

pr.i(Frob))

for prime p € N.

Nicolas Mascot Computing modular Galois representations

We have computed F(x) € Q[x] with decomposition field

L =Q" """ We know the roots of F(x) in C with high

accuracy, and the permutation action of Gal(L/Q) C GL,(IFy)
on them as well.

We must now compute

pr.i(Frob))

for prime p € N.

f=q+Y a,q", Trpei(Frob,) = a, mod L

n>2

Nicolas Mascot Computing modular Galois representations

The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

Let F(x) € Q[x] be irreducible, n = deg F(x), L C C its
decomposition field, and a; € C its roots.

Nicolas Mascot Computing modular Galois representations

The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

Let F(x) € Q[x] be irreducible, n = deg F(x), L C C its
decomposition field, and a; € C its roots.

For almost all h(x) € Z[x],-1, the resolvents

Me(x) = H <x - Z h(a,-)a(a,-)) € Q[x],

ceC i=1
C conjugacy class of Gal(L/Q), are pairwise coprime.

Nicolas Mascot Computing modular Galois representations

The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

For almost all h(x) € Z[x],-1, the resolvents

Me(x) = H <x - Z h(a,-)a(a,-)) € Q[x],
ceC i=1
C conjugacy class of Gal(L/Q), are pairwise coprime.

For each prime p € N such that F(x) is defined and squarefree
mod p, let

Fola] = Fy[x]/(F(x) mod p), u = Trg,ar, h(a)a” € Fp.

Nicolas Mascot Computing modular Galois representations

The Dokchitsers’ resolvents

Theorem (T. & V. Dokchitser, 2010)

For almost all h(x) € Z[x],-1, the resolvents

Me(x) = H <x - Z h(a,-)a(a,-)) € Q[x],
ceC i=1
C conjugacy class of Gal(L/Q), are pairwise coprime.

For each prime p € N such that F(x) is defined and squarefree
mod p, let

Fola] = Fy[x]/(F(x) mod p), u = Trg,ar, h(a)a” € Fp.

Then Frob, € C = ' (u) = 0 mod p.

Nicolas Mascot Computing modular Galois representations

F(x) is HUGE

Problem

The degree of F(x) is large (=~ ¢?), and its coefficients are
huge, so the coefficients of I'c(x) are huge’.

There are algorithms to reduce a polynomial, that is to say
compute another polynomial defining the same number field.
But F(x) is simply too big for them.

Nicolas Mascot Computing modular Galois representations

The projective representation

Instead, we could consider the projective representation

PP Gal(@/Q) X5 GLy(Fy) — PGL,(Fy).

Nicolas Mascot Computing modular Galois representations

The projective representation

Instead, we could consider the projective representation

PP Gal(@/Q) X5 GLy(Fy) — PGL,(Fy).

This corresponds to

Fproj(X) — H X — Z a(D) | € Q[X],

wePlF, giv(t]/

which is of degree ¢ 4 1 only, and can thus be reduced.

Nicolas Mascot Computing modular Galois representations

Quotient representations

More generally, for S < F; embedded diagonally into GL,(F,),
we can consider

p°: Gal(@/Q) 25 GLy(F,) —> GLo(FF,)/S.

Nicolas Mascot Computing modular Galois representations

Quotient representations

More generally, for S < F; embedded diagonally into GL,(F,),
we can consider

Pf 1

p°: Gal(Q/Q) == GLy(F,) — GLy(F,)/S.

Let A € GLy(FFy) such that we know its image in GLy(F,)/S
and detA. If —1 ¢ S, we can recover A.

Nicolas Mascot Computing modular Galois representations

Quotient representations

More generally, for S < F; embedded diagonally into GL,(F,),
we can consider

Pf 1

p°: Gal(Q/Q) == GLy(F,) — GLy(F,)/S.

Let A € GLy(FFy) such that we know its image in GLy(F,)/S
and detA. If —1 ¢ S, we can recover A.

As det pr(= 5xéf_1 is known, we consider

Fi=S>S> 2571

where r = ord,(¢ — 1), and the associated Fi(x) := F>(x).

Nicolas Mascot Computing modular Galois representations

Quotient representations

More generally, for S < F; embedded diagonally into GL,(F,),
we can consider

Pf 1

p°: Gal(Q/Q) == GLy(F,) — GLy(F,)/S.

Let A € GLy(FFy) such that we know its image in GLy(F,)/S
and detA. If —1 ¢ S, we can recover A.

As det pr(= 5)(5_1 is known, we consider

Fi=S>S> 2571

where r = ord,(¢ — 1), and the associated Fi(x) := F>(x).

We now focus on F,(x) instead of F(x).

Reduction of the polynomials

First, we can reduce Fy(x), whose degree is only ¢ + 1.

Nicolas Mascot Computing modular Galois representations

Reduction of the polynomials

First, we can reduce Fy(x), whose degree is only ¢ + 1.
Then, we write K; = Q[x]/Fi(x), so that

K,'+1 = K,'(\/ A,‘), A,‘ S K,'.

We can inductively reduce the F;(x), by writing A; = A24; in
K,' with (5,‘ small.

Nicolas Mascot Computing modular Galois representations

The fields

The filtration

Fp=5%2%2-25=57%-1
2 2 2

yields a tower of quadratic extensions

LG LiC---C L,
5 3 3

S.
=Kerpr!

where L; = Q

Nicolas Mascot Computing modular Galois representations

The fields

The filtration

Fp=5%2%2-25=57%-1
2 2 2

yields a tower of quadratic extensions

LG LiC---C L,
5 3 3

S.
=Kerpr!

where L; = Q

Proposition

L=1L, Ldetp“ .
——
CQ(¢m)

Certification of the output

Nicolas Mascot Computing modular Galois representations

Certification

We have identified the coefficients of

Fx)= [(x—a(D)) €Qx],
D;é(ff[

beyond reasonable doubt, but this is not rigorous.

Nicolas Mascot Computing modular Galois representations

Certification

We have identified the coefficients of

Fx)= [(x—a(D)) €Qx],
D;é(f)’[

beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines pr ?

Nicolas Mascot Computing modular Galois representations

Certification

We have identified the coefficients of

Fx)= [(x—a(D)) €Qx],
D;é(f)’[

beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines pr ?

For simplicity, we will assume that f and [are such that ¢ > 5,
N =1, and that Im pr = GLo(F)).

Nicolas Mascot Computing modular Galois representations

Certification

We have identified the coefficients of

Fx)= [] (x—a(D)) € Qlx].

De Vf7[
D+#0

beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines pr ?

For simplicity, we will assume that f and [are such that ¢ > 5,
N =1, and that Im pr = GLo(F)).
We must prove that

Q Galg(F) O {a(D)} is permutation-isomorphic to
GLo(F,) O F> — {0},

@ the corresponding Galois representation g is pr .

Certification

We have identified the coefficients of

Fx)=] (x—a(D)) €Qlx,

De Vf7[
D+#0

beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines pr ?

For simplicity, we will assume that f and [are such that ¢ > 5,
N =1, and that Im pr = GLo(F)).
We must prove that
Q Galg(F) O {«(D)} is permutation-isomorphic to
GLy(F,) O F/* — {0}
~» compute Galgy(F) with Magma,
@ the corresponding Galois representation g is pr .

Certification

We have identified the coefficients of

F(x) = H (x — (D)) € Q[x],
DEV&[
D#0
beyond reasonable doubt, but this is not rigorous.

How do we certify that F(x) defines ps ?

For simplicity, we will assume that f and [are such that ¢ > 5,
N =1, and that Im pf; = GLo(F,).

We must prove that
Q Galg(F) O {a(D)} is permutation-isomorphic to
GLy(Fy) O F,* — {0}
~» compute Galg(F) with Magma,
@ the corresponding Galois representation g is pr

~> use Serre's modularity conjecture.
Nicolas Mascot Computing modular Galois representations

Serre's modularity conjecture

Theorem (Khare+Wintenberger, 2009)
Let ¢ € Gal(Q/Q) be the complex conjugation, and let

p: Gal(Q/Q) — GLy(F,)

be an irreducible Galois representation such that
det p(c) = —1. Then there exists a newform
f e S, (F1(N,),e,) and a prime [|¢ such that

P~ Pfl

Moreover, there are explicit recipes to compute N, k, and ¢,,.

Nicolas Mascot Computing modular Galois representations

Proof of the projective Galois group

Let x,y, z, t € P'F, be pairwise distinct. Their cross-ratio is
by definition y(t), where v € PGL,(F,) is the only element
sending (x, y, z) to (00,0, 1).

Nicolas Mascot Computing modular Galois representations

Proof of the projective Galois group

Let x,y, z, t € P'F, be pairwise distinct. Their cross-ratio is
by definition y(t), where v € PGL,(F,) is the only element
sending (x, y, z) to (00,0, 1).

Proposition

Let v be a permutation of P'F,. Then

7 preserves cross-ratios <= vy € PGL,(Fy).

Nicolas Mascot Computing modular Galois representations

Proof of the projective Galois group

Proposition

Let v be a permutation of P'F,. Then

7 preserves cross-ratios <= vy € PGL,(Fy).

= proj
Let <5W D 04Dcw oz(D)) . be the roots of FP(x), and
let Ay, ---, As4 be distinct integers. We compute
4
Ri(x)=] <x -)\mﬁwm) € Z[x].
Wi, ,Wa m=1
distinct

If Ry(x) is squarefree and factors along cross-ratios, this
proves that Galg(FP) < PGLy(IF).

Nicolas Mascot Computing modular Galois representations

Proof of the projective Galois group

We can define the unordered cross-ratio map

u: (Pl(fé)) — F,

{X7y7z7t} — ./([X’.y7z’t]) ’

. _ 2)3
where j(A) = 256%.

Nicolas Mascot Computing modular Galois representations

Proof of the projective Galois group

We can define the unordered cross-ratio map

u: (Pl(fé)) — F,

{X7y7z7t} — ./([X’.y7z’t]) ’

. _ 2)3
where j(A) = 256%.

Theorem (M., 2016)

Q@ VI > 5, PGLy(IFy) is a maximal subgroup of Gpi(g,).
Q VI #5, v O PYF,) preserves u <= v € PGL,(F)).

Nicolas Mascot Computing modular Galois representations

Proof of the projective Galois group

Theorem (M., 2016)

@ V/ > 5, PGLy(F,) is a maximal subgroup of Gp1(x,).
Q VI #5, v O PYF,) preserves u <= v € PGLy(Fy).

Instead of

Ry(x) = H <x — Z l/mﬁwm> € Z[x],

Wy, W
distinct

for ¢ # 5 we may use
= T (=3 5 ez
We(l}"l(f‘g)) weW

whose degree is 24 times smaller.

Nicolas Mascot Computing modular Galois representations

Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman

2007)

Let 7: Gal(Q/Q) — PGLy(IF,) be an irreducible projective
Galois representation such that 7(c) fixes exactly two points
of P'F,. If the discriminant of the field corresponding to

7 1([§1]) is of the form +¢“+k=2 for some k > 3, then there

exists a newform f € Si(1) and a prime [|¢ such that 7 ~ p'?.

V.

Nicolas Mascot Computing modular Galois representations

Proof of the projective representation

Theorem(Projective Serre) (Moon+Taguchi 2003, Bosman

2007)

Let 7: Gal(Q/Q) — PGLy(IF,) be an irreducible projective
Galois representation such that 7(c) fixes exactly two points
of P'F,. If the discriminant of the field corresponding to

7 1([§1]) is of the form +¢“+k=2 for some k > 3, then there

exists a newform f € Si(1) and a prime [|¢ such that 7 ~ p'?.

To make sure we have the right f, we use the fact that for
prime v { Disc (FPi(x)),

a,(f)=0mod [<= pr (Frob,) is of order 2
<= FP®(x) mod v splits into linear or
quadratic factors, and is not

completely split.

Switching to p-adics

Later on, we will need to work on p-adic numbers instead of
complex ones.

Nicolas Mascot Computing modular Galois representations

Switching to p-adics

Later on, we will need to work on p-adic numbers instead of
complex ones.

We fix a large prime p € N such that the F;(x) are irreducible
mod p, and we will work with the roots of the F;(x) in Q,
from now on.

Nicolas Mascot Computing modular Galois representations

Switching to p-adics

Later on, we will need to work on p-adic numbers instead of
complex ones.

We fix a large prime p € N such that the F;(x) are irreducible
mod p, and we will work with the roots of the F;(x) in Q,

from now on.

Unfortunately, we have thus thrown away the indexation of the
roots. We will have to recover it at some point.

Nicolas Mascot Computing modular Galois representations

The higher Galois groups

For each i < r, let
o K; = Q[x]/Fi(x) the root field of F;(x),
@ L; be the splitting field of F;(x),
@ Z; the set of p-adic roots of F;(x),
e and write V; = (F,? — {0})/S..

Nicolas Mascot Computing modular Galois representations

The higher Galois groups

For each i < r, let
o K; = Q[x]/Fi(x) the root field of F;(x),
@ L; be the splitting field of F;(x),
@ Z; the set of p-adic roots of F;(x),
e and write V; = (F,? — {0})/S..

We want to find a compatible system of isomorphisms Z; ~ V;
and GBI(L,/Q) >~ GLQ(F@)/S,

Nicolas Mascot Computing modular Galois representations

The higher Galois groups

For each i < r, let
o K; = Q[x]/Fi(x) the root field of F;(x),
@ L; be the splitting field of F;(x),
@ Z; the set of p-adic roots of F;(x),
e and write V; = (F,? — {0})/S..

We want to find a compatible system of isomorphisms Z; ~ V;
and GBI(L,/Q) >~ GLQ(F@)/S,

For now, all we know is that

Gal(Lo/Q) ~ PGLy(F,) O P'F,.

Nicolas Mascot Computing modular Galois representations

The Galois closures are not too big

We know that K1 = K;(1/9;) is quadratic over K;, and that
L; is the Galois closure of K;.

Nicolas Mascot Computing modular Galois representations

The Galois closures are not too big

We know that K1 = K;(1/9;) is quadratic over K;, and that
L; is the Galois closure of K;.

It is reasonable to assume that K; = Q(6;) ~ Q[x]/di(x).

Nicolas Mascot Computing modular Galois representations

The Galois closures are not too big

We know that K1 = K;(1/9;) is quadratic over K;, and that
L; is the Galois closure of K;.

It is reasonable to assume that K; = Q(6;) ~ Q[x]/di(x).

@ We can check that L;,1/L; is at most quadratic, by
studying how

2 > 0(0)
Res, (di(x°y), di(y)) = Cst. H X2 —
o (8:)£7(5:) (7'(5:'))

factors over subfields of Q(y).

Nicolas Mascot Computing modular Galois representations

The Galois closures are not too big

We know that K1 = K;(1/9;) is quadratic over K;, and that
L; is the Galois closure of K;.

It is reasonable to assume that K; = Q(6;) ~ Q[x]/di(x).

@ We can check that L;,1/L; is at most quadratic, by
studying how

2 > 0(0)
Res, (di(x°y), di(y)) = Cst. H X2 —
o (8:)£7(5:) (7'(5:'))

factors over subfields of Q(y).

@ We can check that L;;; # L; by finding a prime v € N
such that F;(x) splits completely mod v but F; 1(x) does
not.

Nicolas Mascot Computing modular Galois representations

A classification theorem

Theorem (Quer, 1995)
Let i € N.

Q@ H?(PGLy(Fy), Gyi) =~ G x G, , so there are 4 central
extensions

1 — Cyi — G — PGLy(F,) — 1.

Write the corresponding normalised cocycles as 5; = 1,
Bdet, B+ and [_, and the corresponding central extensions
as Cy x PGLy(Fy), 24, PGLx(F,), 2, PGL,(F,) and

2" PGLy(TFy).

Nicolas Mascot Computing modular Galois representations

A classification theorem

Theorem (Quer, 1995)
Let i € N.

Q@ H?(PGLy(Fy), Gyi) =~ G x G, , so there are 4 central
extensions

1 — Cyi — G — PGLy(F,) — 1.

Write the corresponding normalised cocycles as 5; = 1,

Bdet, B+ and [_, and the corresponding central extensions
as Cy x PGLy(Fy), 24, PGLx(F,), 2, PGL,(F,) and

21 PGL,(F).
@ If i =1, then for all g € PGL,(TF,) of order exactly 2,
° fi(g,g) =1,

o fdet(g,8) =1 <= g € PSLy(IFy),
° B1(g,8) =1 <= g ¢ PSLy(Fy),
° B*(gag) = _1

Nicolas Mascot Computing modular Galois representations

A classification theorem

Theorem (Quer, 1995)
Let / € N.
Qo H2(PGL2(FZ), sz) ~GxG.
@ If i =1, then for all g € PGL,(IF,) of order exactly 2,

° fi(g,8) =1,

o faet(g,8) =1 <= g € PSLy(IFy),
o B1(g,8) =1 <= g & PSLy(IFy),
° B—(gag) =-L

C2i X PGLz(Fg))ab =~ C2i x G,
2 PGLy(F))* ~ Cyina,

(

(

(21, PGL,(F))* ~ Gy,

(2 PGLa(Fp))™ =~ Cyims x Ca.

Nicolas Mascot Computing modular Galois representations

A classification theorem

Theorem (Quer, 1995)
Let i € N.

Q@ H?(PGLy(Fy), Gyi) =~ G x G, , so there are 4 central
extensions

1 — Cyi — G — PGLy(F,) — 1.

Write the corresponding normalised cocycles as 5; = 1,
Bdet, B+ and [_, and the corresponding central extensions
as Cy x PGLy(Fy), 24, PGLx(F,), 2, PGL,(F,) and

2" PGLy(TFy).

Nicolas Mascot Computing modular Galois representations

A classification theorem

Theorem (Quer, 1995)
Let i € N.

Q@ H?(PGLy(Fy), Gyi) =~ G x G, , so there are 4 central
extensions

1 — Cyi — G — PGLy(F,) — 1.

Write the corresponding normalised cocycles as 5; = 1,

Bdet, B+ and [_, and the corresponding central extensions
as Cy x PGLy(Fy), 24, PGLx(F,), 2, PGL,(F,) and

21 PGL,(F).
@ If i =1, then for all g € PGL,(TF,) of order exactly 2,
° fi(g,g) =1,

o fdet(g,8) =1 <= g € PSLy(IFy),
° B1(g,8) =1 <= g ¢ PSLy(Fy),
° B*(gag) = _1

Nicolas Mascot Computing modular Galois representations

A classification theorem

Theorem (Quer, 1995)
Let / € N.
Qo H2(PGL2(FZ), sz) ~GxG.
@ If i =1, then for all g € PGL,(IF,) of order exactly 2,

° fi(g,8) =1,

o faet(g,8) =1 <= g € PSLy(IFy),
o B1(g,8) =1 <= g & PSLy(IFy),
° B—(gag) =-L

C2i X PGLz(Fg))ab =~ C2i x G,
2 PGLy(F))* ~ Cyina,

(

(

(21, PGL,(F))* ~ Gy,

(2 PGLa(Fp))™ =~ Cyims x Ca.

Nicolas Mascot Computing modular Galois representations

Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Nicolas Mascot Computing modular Galois representations

Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

) 24etPGLy(FF¢), ¢=1mod 4,
Gal(L:/Q) ~ { 2. PGLy(F,), (= —1mod 4,

Nicolas Mascot Computing modular Galois representations

Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

) 24etPGLy(FF¢), ¢=1mod 4,
Gal(L:/Q) ~ { 2. PGLy(F,), (= —1mod 4,

and that the same goes for GL,(FF,)/F;>.

Nicolas Mascot Computing modular Galois representations

Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Nicolas Mascot Computing modular Galois representations

Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

) 24etPGLy(FF¢), ¢=1mod 4,
Gal(L:/Q) ~ { 2. PGLy(F,), (= —1mod 4,

Nicolas Mascot Computing modular Galois representations

Gal(L1/Q) ~ GLy(FF,)/F:?

Letl — G — G — G — 1 be an extension with
normalised cocycle 3 € H*(G, (), and let g € G of order 2.
Then the lifts of g have order 2 if 5(g,g) = 1, and order 4
else.

Thanks to the complex conjugation, we deduce that

) 24etPGLy(FF¢), ¢=1mod 4,
Gal(L:/Q) ~ { 2. PGLy(F,), (= —1mod 4,

and that the same goes for GL,(FF,)/F;>.

Nicolas Mascot Computing modular Galois representations

Going up and down

Since r =1 when ¢ = —1 mod 4, we now assume
/=1 mod 4.

Nicolas Mascot Computing modular Galois representations

Going up and down

Since r =1 when ¢ = —1 mod 4, we now assume
/=1 mod 4.

Gal(L;/Q) is an extension of Gal(L;_1/Q) by C,. We prove by

induction on / that it is an extension of PGLy(FF,) by G, and
that this extension is central.

Nicolas Mascot Computing modular Galois representations

Going up and down

Since r =1 when ¢ = —1 mod 4, we now assume
/=1 mod 4.

Gal(L;/Q) is an extension of Gal(L;_1/Q) by C,. We prove by
induction on / that it is an extension of PGLy(FF,) by G, and

that this extension is central.

We deduce from the abelianisations that

Gal(L,/Q) = GLa(F¢)/S..

Nicolas Mascot Computing modular Galois representations

Going up and down

Since r =1 when ¢ = —1 mod 4, we now assume
/=1 mod 4.

Gal(L;/Q) is an extension of Gal(L;_1/Q) by C,. We prove by
induction on / that it is an extension of PGLy(FF,) by G, and
that this extension is central.

We deduce from the abelianisations that

Gal(L,/Q) = GLa(F¢)/S..

More generally, we see that

PGLy(F,), =0,
GaI(L,/Q) ~ GLQ(F@)/S, i 2éetPGL2(]Fg)7 O<i< r,
2 PGLy(F,), i=r.

Nicolas Mascot Computing modular Galois representations

The action of Galois

We now know that Gal(L;/Q) ~ GL,(F,)/S; as an abstract
group, so we get Galois representations g;.

But is its action on the roots of F;(x) equivalent to
GLy(Fy)/Si O Vi ?

Nicolas Mascot Computing modular Galois representations

The action of Galois

We now know that Gal(L;/Q) ~ GL,(F,)/S; as an abstract
group, so we get Galois representations g;.

But is its action on the roots of F;(x) equivalent to
GLy(Fy)/Si O Vi ?

By construction, the image of the stabilizer of a root of F;(x)
is conjugate to a subgroup of index 2 of [§*] < GLy(FF,)/F3?.

Nicolas Mascot Computing modular Galois representations

The action of Galois

We now know that Gal(L;/Q) ~ GL,(F,)/S; as an abstract
group, so we get Galois representations g;.

But is its action on the roots of F;(x) equivalent to
GLy(Fy)/Si O Vi ?

By construction, the image of the stabilizer of a root of F;(x)
is conjugate to a subgroup of index 2 of [§*] < GLy(FF,)/F3?.

So it must be either
o Hy = {[’5’;] | x € F;Z} or
o H ={[s;] |y eF;?}, or
o Hy={[s,] | xy € F;*}.

Nicolas Mascot Computing modular Galois representations

The action of Galois

By construction, the image of the stabilizer of a root of F;(x)
is conjugate to a subgroup of index 2 of [§ %] < GL,(FF,)/F;2.

So it must be either
o Hy={[5:] |x € F;?}, or
o H ={[c;] |y eF;?}, or
o Hy= {[’6;] |xyEIF}‘2}.

But
(Nethe 26 #1
g

for e & F}z, so Hy corresponds to a non-faithful action of
GLy () /2.

Nicolas Mascot Computing modular Galois representations

The action of Galois

By construction, the image of the stabilizer of a root of F;(x)
is conjugate to a subgroup of index 2 of [§] < GLy(F,)/F;?.

So it must be either
o Hi={[5:]|x¢€ F;Z} or
o H,—{[53] |y € F;2}, or
o Hy={[5,]|xy € F;?}.

H; corresponds to a non-faithful action of GL,(F;)/F;?

After twisting by the automorphism A — ;= A which swaps
H; and H|, we can suppose that the stab|||zer is H;.

Nicolas Mascot Computing modular Galois representations

Are the representations correct ?

Now we know that
GaI(F,) = GLQ(F@)/S,

in a compatible way, we get a compatible collection of
representations

o;i - G@ — GL2(IFZ)/S,

We want to show that

s,
Pr =~ Pr -

Nicolas Mascot Computing modular Galois representations

Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our
Galois group computation, and then compute

00(Frob,) = ® € PGLy(F,)
by looking at Frob, acting on them.

Nicolas Mascot Computing modular Galois representations

Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our
Galois group computation, and then compute

00(Frob,) = ® € PGLy(F,)
by looking at Frob, acting on them.

So o,(Frob,) = A® € GL,(F,)/S, for some unknown
A e Fy/S,.

Nicolas Mascot Computing modular Galois representations

Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our
Galois group computation, and then compute

00(Frob,) = ® € PGLy(F,)
by looking at Frob, acting on them.

So o,(Frob,) = A® € GL,(F,)/S, for some unknown
A e Fy/S,.

Let z € Z, be a root of F,(x). We find the corresponding root
of Fo(x), then the line w € P'F, that indexes it, and we index
z by a vector v € w.

Nicolas Mascot Computing modular Galois representations

Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our
Galois group computation, and then compute

00(Frob,) = ® € PGLy(F,)
by looking at Frob, acting on them.

So o,(Frob,) = A® € GL,(F,)/S, for some unknown
A e Fy/S,.

Let z € Z, be a root of F,(x). We find the corresponding root
of Fo(x), then the line w € P'F, that indexes it, and we index
z by a vector v € w.

Then for each A, we get a candidate indexation of Z, by V,:
Frob) z <+ (A®)"v.

Nicolas Mascot Computing modular Galois representations

Recovering the indexation of the roots

We can index the p-adic roots of Fy(x) by P!, thanks to our

Galois group computation, and then compute
00(Frob,) = ® € PGLy(F,)

by looking at Frob, acting on them.

So o,(Frob,) = A® € GL,(F,)/S, for some unknown
A e Fy/S,.

Let z € Z, be a root of F,(x). We find the corresponding root
of Fo(x), then the line w € P'F, that indexes it, and we index
z by a vector v € w.

Then for each A, we get a candidate indexation of Z, by V,:
Frob) z <+ (A®)"v.

For each of these, we compute one coefficient of one resolvent
[c(x). All but one clash with archimedian bounds.

S
Or ~ P

Since 00 ~ Pr,1, there exists a Galois character
¢ Gal(Q/Q) — I} /S, such that

o~ Y ® pf,r[

Nicolas Mascot Computing modular Galois representations

S
Or ~ P

Since 00 ~ Pr,1, there exists a Galois character
¢ Gal(Q/Q) — I} /S, such that

o~ Y ® pf,r[

Because of the ramification, @) must be a power of the
cyclotomic character mod /.

Nicolas Mascot Computing modular Galois representations

S
Or ~ P

Since 00 ~ Pr,1, there exists a Galois character
¢ Gal(Q/Q) — I} /S, such that

Or ~ w ® pf,r[
Because of the ramification, @) must be a power of the

cyclotomic character mod /.

We check that
Tr o.(Frob,) € (a,(f) mod) S,

for some small v € N such that (v) = F; and a,(f) # 0 mod [,

Nicolas Mascot Computing modular Galois representations

Examples of results

Nicolas Mascot Computing modular Galois representations

Example: pa 29 (genus g = 22)

p pa20(Frob,) similar to | 7(p) mod 29

-

101000 1 453 0 5] 21

101000 1 1357 0 %] 8
e

10100 4 9713 0] 11

101000 4 4351 0 2] 0

101000 1 5733 20 0] 22
19 0

101000 1 7383) 0

101900 4 10401 133] 9

Nicolas Mascot Computing modular Galois representations

Example: Lehmer'’s conjecture

Conjecture (Lehmer, 1947)
For all n > 1, 7(n) # 0.

Nicolas Mascot Computing modular Galois representations

Example: Lehmer'’s conjecture

Conjecture (Lehmer, 1947)
For all n > 1, 7(n) # 0.

Improvement of previous results (Bosman 2007):

p pa.20(Frob,) similar to | 7(p) mod 29
22798241520242687999 [0 2] 3
60707199950936063999 [0 19] 9
93433753964906495999 [0] 4
102797608484376575999 [0 3] 4

Nicolas Mascot Computing modular Galois representations

Example: pf, 31 (genus g = 26)

54—27'24 n)q" € Sau(1),

141144169

4(n) € Ke,, = Q(a), a= 5

Nicolas Mascot Computing modular Galois representations

Example: pf, 31 (genus g = 26)

p Phoats (Froby) | pha.ns (Froby) | m24(p) mod 31Z[a]
10001453 | [] | [Y 4] 14 7a
0011357 || S| [Y S 1+ 4a
10000 1 o713 | [2 9] | [9] 4+ 230
04351 | 7S] [0 8] 9+ 200
5733 | (Y o] |G 8] 3+ 180
10017383 | | § 77 | 53] 17 + 20
100 10401 | | T 2| | [Y] 9+ 160

Nicolas Mascot Computing modular Galois representations

Thank you !

Nicolas Mascot Galois representations

