SOME BOUNDS FOR RAMIFICATION OF p"-TORSION SEMI-STABLE
REPRESENTATIONS

XAVIER CARUSO AND TONG LIU

ABSTRACT. Let p be an odd prime, K a finite extension of Qp, G = Gal(K/K) its absolute
Galois group and e = e(K/Qjp) its absolute ramification index. Suppose that T is a p™-torsion
representation of G i that is isomorphic to a quotient of G k-stable Zjy-lattices in a semi-stable
representation with Hodge-Tate weights {0,...,r}. We prove that there exists a constant p
depending only on n, e and r such that the upper numbering ramification group G(I?> acts on T'
trivially.
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1. INTRODUCTION

Let p > 2 be a prime number and k a perfect field of characteristic p. We denote by W = W (k)
the ring of Witt vectors with coefficients in k. Fix a totally ramified extension K of W[1/p] of
degree e and an algebraic closure K of K. Set G = Gal(K/K). Denote by G (u € R) the upper
ramification filtration of G, as defined in §1.1 of [10]. Note that conventions of loc. cit. differ from
those by some shift from the definitions of [24], Chap. IV. Finally, let vx be the discrete valuation
on K normalized by vg (K*) = Z. It extends uniquely to a (nondiscrete) valuation on K, which
we denote again by vg.

Consider r a positive integer and V' a semistable representation of G with Hodge-Tate weights
in {0,1,...,7}. Let T be the quotient of two G-stable Z,-lattices in V. It is a representation of G,
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which is annihilated by p" for some integer n. Denote by p : G — Autz, (T') the associated group
homomorphism and by L the finite extension of K defined by ker p. The main result of this paper
is the following theorem.

Theorem 1.1. Write

p"_’"l = p*0 with « € N and % < B <1. Then:
(1) if u>1+e(n+ )+ max(ef — pn%, 557), then G acts trivially on T;
(2) ve(Dryk) <1+e(n+a+ )~ s,

where Dy, is the different of L/K.

Before this work, some partial results were already known in this direction. First, in [10] and
[12], Fontaine uses Fontaine-Laffaille’s theory (developed in [9]) to get some bounds when e = 1,
n=1,r <p—1and V is crystalline. In [1], Abrashkin follows Fontaine’s general ideas to extend
the result to arbitrary n (other restrictions remain the same). Later, with the extension by Breuil
of Fontaine-Laffaille’s theory to semistable case (see [3]), it has been possible to achieve some cases
where V' is not crystalline. Precisely in [4] (see Proposition 9.2.2.2 of [2] for the statement), Breuil
obtains bounds for semistable representations that satisfy Griffith transversality when n = 1 and
er < p— 1. Recently in [15] and [16], Hattori proves a bound for all semistable representations
with 7 < p—1 (e and n are arbitrary here). All these bounds (for y and vi (D)) have the same
form

(1.0.1) e (n + 1%) + (some other terms),

where the contribution of other terms that appear is always between 0 and 1. Since r is always
assumed to be less than p — 1, one can see that these bounds are better than ours. However, the
most important feature of Theorem 1.1 is to be applicable for any r! Furthermore, one remark
that the bounds of Theorem 1.1 have a logarithmic dependence in r, which may be quite surprising
after (1.0.1) where the dependence seems to be linear (of course, it does not mean anything since
these bounds are conditional to the assumption r < p — 1). Actually, it is very plausible that,
using analogous methods, one can improve Theorem 1.1 in order to fit with (1.0.1). Precisely, we
conjecture the following.

Conjecture 1.2. Writing -~ = p* 3’ with o/ € N and + < 3’ < 1, we have:
p—1 P
(1) if p>1+e(n+ ')+ max(ef — pn—}ra,, 757) then GW acts trivially on T;

(2) v&(Dr/k) <14e(n+ao + ') 1

- pn+a’ .

We finally wonder if better bounds exist when V' is crystalline. This is the case with e = 1 and
r < p — 1 by results of Fontaine and Abrashkin, but it is not clear to us how to extend this to a
more general setting.

We would like to emphasize that Theorem 1.1 can be applied to many representations coming
from geometry. For instance, by a famous theorem (see for instance [25]), we know that for any
proper smooth X over K with semistable reduction over Ok and any non-negative integer r,
the étale p-adic cohomology group H} (Xg,Qp) is a semistable representation with Hodge-Tate
weights in {0,...,r}. Hence, the bounds of Theorem 1.1 are valid for instance for the p™-torsion
representation L/p™L where L = H, (X, Z,)/torsion. One may wonder if the same bounds hold
for H, (Xz,Z,)/p"™ or even for H} (Xz,Z/p"Z). When er < p—1, it follows from Hattori’s result
[16] and a comparison theorem between étale and log-crystalline cohomology due to one of us [7].
In general, it seems to be unknown.

Another interesting example comes from the theory of modular forms since we know that the
p-adic Galois representation associated to a modular form of level prime to p is always crystalline
(and hence semistable).

Let us now explain the general plan of our proof (and at the same time of the article). For this
we first introduce further notations: we fix a uniformizer m € O and a compatible system (7s)s>0
of p®-th root of 7. For all nonnegative integer s, put Ky = K(7,) and G5 = Gal(K/K;). Define

oo —
also Koo = |J K and Goo = Gal(K/K).
s=1
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The general strategy follows closely the method introduced first by Fontaine to deal with this
kind of questions; the main tool is to use some p-adic Hodge theory to describe quotients of
lattices in semistable representations in terms of “objects of linear algebra”. Unfortunately, in the
generality of Theorem 1.1 — that is, for arbritrary » —, we do not have a complete machinery for
that. Instead of that, we use Breuil-Kisin theory (suggested by Breuil in [5] and [6] and developped
by Kisin in [18] and [19]) which gives just a description of the action of the subgroup G, by some

“Kisin modules”?.

However, unfortunately, it is not true that Goc C G for some p. Hence studying only the
action of G, is certainly not enough to derive Theorem 1.1! That is the reason why we need to
extend Breuil-Kisin theory a bit in the torsion case: we will actually show that if 9 is the Kisin
module associated to a L (with notation of Theorem 1.1), then the data of 9t is enough to recover
the whole action of G on T for s > spin :=n — 1 + log,(nr). More precisely, we prove in §2 that
any Kisin module of p"-torsion determines a representation of G5 with s > spyin (and not only
G ). Note that this first step does not use any assumption of semistability: our result is true
for all representations (annihilated by p™) coming from a Kisin module, no matter if they can be
realized as a quotient of two lattices in a semistable representation. Then, in §3, we show that the
G-representation attached to 91 coincide with T'|¢,. At this level, let us mention an interesting
corollary of the theory developed in these two sections:

Theorem 1.3 (Corollary 3.3.5). Let V and V' be two semistable representations of G with Hodge-
Tate weights in {0,...,r}. Let T (resp. T') a quotient of two G-stable lattices in V (resp. V')
which is annihilated by p™. Then any G -equivariant morphism f : T — T’ is Gs-equivariant for
all integer s > n — 1+ log, (nr).

Then, using usual techniques developed by Fontaine in [10], we prove the following Theorem,

from which Theorem 1.1 easily follows using some kind of transivity formulas.

nr
p—1

Theorem 1.4. Keeping previous notations, for any integer s > n + logp( ) and for all real
ernp”™

o, G acts trivially on T.

number [ >

Remark 1.5. The condition on s implies £*

pln < ep®. Hence one may always choose p = ep®.

Finally, in §5, we begin a discussion about the possibility of writing a given torsion representation
of Gk as a quotient of two lattices in a Q,-representation satisfying some properties (like being
crystalline, semistable, with prescribed Hodge-Tate weights).

Conventions. For any Z-module M, we always use M,, to denote M/p"M. If A is a ring, then
M,(A) will denote the ring of d x d-matrices with coefficients in A. We reserve ¢ to represent
various Frobenius structures (except that o stands for the usual Frobenius on W (k)) and ¢ will
denote the Frobenius on M. But we always drop the subscript if no confusion arises.

Finally, if A is a ring equipped with a valuation v4 we will often set:

a7’ ={r e Ajva(x) >v} and a3’ ={xc A/va(z) >0}

2. G4-REPRESENTATION ATTACHED TO A TORSION KISIN MODULE

In this section, we prove that the G -representation T, (9) attached to Kisin modules I
annihilated by p" can be naturally extended to a G-representation for all s > n — 1 + log,(nr)
(and sometimes better).

2.1. Definitions and basic properties of Kisin modules. Recall the following notations: k
is a perfect field, W = W(k), K is a totally ramified extension of W[1/p] of degree e, 7 is a fixed
uniformizer of K. Recall also that we have fixed a positive integer 7. Define F(u) to be the minimal
polynomial of 7w over W1/p].

1As we have already said, these modules were first introduced by Breuil. However, we think that this terminology
is not so bad since “Breuil modules” already have a different meaning and “Kisin modules” were actually really
studied by Kisin.
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The base ring for Kisin modules is & = W[u]. It is endowed with a Frobenius map ¢ : 6 — &

defined by:
(p( Z aiui> = Z o(a;)uP?

i>0 i>0
where o stands for usual Frobenius on W. By definition, a free Kisin module (of height < r) is a
&-module M free of finite rank equipped with a ¢-semilinear endomorphism gy : 9t — 9t such
that the following condition holds:

(2.1.1) the G-submodule of M generated by @on(9M) contains E(u)" M.

We denote by Mod&" their category. Of course, a morphism of ModZ" is just a &-linear map that
commutes with Frobenius actions. In the sequel, if there is no risk of confusion, we will often write
o instead of wgy.

There is also a notion of torsion Kisin modules of height < r. They are modules 9t over &
equipped with a ¢-semilinear map ¢ : 9t — 991 such that:

e 91 is finitely generated and annihilated by a power of p;
e 91 has no u-torsion;
e condition (2.1.1) holds.

Let us call Modg" (resp. Modg", resp. Freeg") the category of all torsion Kisin modules
(resp. of torsion Kisin modules annihilated by p™, resp. torsion Kisin modules annihilated by
p" and free over &,, = 6/p"&). Obviously Freed" C Mod&" and |J,,5; Modg" = Modg" (the
union is increasing). It is proved in Proposition 2.3.2 of [20] that torsion Kisin modules are exactly
quotients of two free Kisin modules of same rank. In particular every object in Modé’: is a quotient
of an object in Freeé’:. We finally note that dévissages with torsion Kisin modules are in general
quite easy to achieve since if 9 is in Mod‘é’: then 9,y = ker plon and /M, are respectively in
Modg" and Modg"  and we obviously have an exact sequence 0 — DM,y — M — M/M,,) — 0
(see Proposition 2.3.2 in [20]).

2.2. Functors to Galois representations. We first need to define some period rings. Let R =
liins Og/p where transition maps are Frobenius. By definition an element z € R is a sequence
(@, 20 ) such that (z(+tD)? = z(9). Fontaine proves in [13] that R is equipped with a
valuation defined by vg(z) = SILIEOpSUK(x(S)) if z # 0. (In this case, (*) does not vanish for s

large enough and its valuation is then well defined; starting from this rank, the sequence p*vg (z(*))
is constant.) Note that k embeds naturally in R via A — (A A1) ) where A\(*) is the unique p*-
th root of A in k (recall that k is assumed to be perfect). This embedding turns R into a k-algebra.
Now, consider W(R) (resp. W,,(R)) the ring of Witt vectors (resp. truncated Witt vectors) with
coefficients in R. It is a W-algebra (resp. a W, (k)-algebra). Moreover, since Frobenius is bijective
on R, W, (R) = W(R)/p"W(R). Recall that we have fixed (7s) a compatible sequence of p*-roots
of w. It defines an element m € R whose Teichmiiller representative is denoted by [x]. We can
then define an embedding & — W(R), u — [x]. For any positive integer n, reducing modulo p",
we get a map &,, — W,,(R) which remains injective. In the sequel, we shall still often denote by
u its image in W(R) and W,,(R). Let Og be the closure in W (Frac R) of &[1/u] (for the p-adic
topology). Define £ = FracO¢ and EW the p-adic completion of the maximal (algebraic) unramified
extension of & in W (Frac R)[1/p]. Denote Og,, its ring of integers and put & = W(R) N Og,;.
Clearly &"" is a subring of W (R) and one can check (see Proposition 2.2.1 of [20]) that it induces
an embedding G = &" /p"S™ — W, (R). Remark finally that all previous rings are endowed
with a Frobenius action.

Recall that G (resp. Gs) is the absolute Galois group of K (resp. Ky, = K(m,)) and that
G is the intersection of all G5. Denote by Repfzrje(Goo) (resp. Reptz‘;r(Goo)) the category of free
(resp. torsion) Z,-representations of Go. We define functors T : Mod2" — Repgsc(Goo) and
Ts, : Modg" — Reptz(;r(Goo) by:

Ts (M) := Homeg ,, (M, E") and Tgs, (M) := Home (9N, ;)
where Homeg , means that we take all G-linear morphism that commutes with Frobenius. Note
that T (9M) and T, (IM) are not representations of G because this group does not act trivially
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on & C W(R). If n’ > n then any object M of Modg&" is obviously also in Modg", and we have
a canonical identification T, (M) ~ T ,(IM). This fact allows us to glue all functors T, and

define Ts,, : Modg" — ReptZC;Y(GOO). An important result is the exactness of Tg_ (see Corollary
2.3.4 of [20]).

Lemma 2.2.1 (Fontaine). Let n be an integer and 9 be an object of Mod‘g’:. The embedding
G — W, (R) induces an isomorphism Tg, (M) = Homg,, (M, W, (R)).

Proof. See Proposition B.1.8.3 of [11]. O

2.3. The modules J,, .(91). Let n be an integer and 9% an object of Modé’:. For all nonnegative
real number ¢, we define a;,° = {z € R /vg(z) > ¢} and [a3°] the ideal of W, (R) generated by all
[] with z € a3 and, by the same way, aic and [a]%c]. We have very explicit descriptions of these
ideals:

Lemma 2.3.1. Let c € RT. Then:

(1) for all zg,...,xn—1 € R, (z0,...,2n_1) is in [a3°] (resp [aic]) if and only if vr(x;) > pic
(resp. vr(z;) > pic) for alli ;
(2) if v € R has valuation c, then [a?] is the principal ideal generated by [v].

Proof. Easy with the formula [2](z0, ..., 2n_1) = (230, 2Px1, ..., 27" Zp_1). O
Since [az¢] is stable under ¢ and G-action, the quotient W, (R)/[a7°] inherits a Frobenius action
and it makes sense to define:

(2.3.1) Jn.e() == Home (9, Wy, (R)/[a3]).-

It is endowed with an action of G,. Let’s also denote J, o = Homg (9, W, (R)) ~ Ts, (IN)
(Lemma 2.2.1). Obviously, if ¢ < ¢ < oo, the reduction modulo [a7°] defines a natural G-
equivariant morphism pe ¢ : Jp,e (M) — Jp (). I ¢ < ¢ < " < 00, we have per o = per 0 perr er-

Lemma 2.3.2. w is nilpotent in Wy [u]/E(u)".

Proof. Since E(u) is an Eisenstein polynomial, the congruence E(u) = u¢ (mod p) holds in Wu].
Hence E(u)” = v (mod p), which means that «°" is divisible by p in Wu]/E(u)". It follows that
p" divides u®™ in Wlu]/E(u)", i.e. u®"™ vanishes in W, [u]/E(u)". O

Fix a positive integer N such that u" = 0 in W, [u]/E(u)". By previous proof one can take
N = ern, but in many situations this exponent can be improved. In the following subsection, we
N

will examine several examples. From now on, we put b = 1 and a =b+ N = ;TNl.

Proposition 2.3.3. The morphism poop : Ta, (M) — Jnp(M) is injective and its image is
Pab(Jn.a(M)).

Proof. We first prove injectivity. Let f : 9 — [a;b] be a @-morphism. We want to show that

f = 0. First, remark that since 91 is finitely generated, f takes its values in [aib/] for some b’ > b.
Let z € M. By definition of N, uNx belongs to E(u)"9. By condition (2.1.1) we can write

uNe = Mp(z1) + -+ App(xr). Applying f, we get:

uN f@) = Mp(f(x1)) + -+ Mo f(an) € [a7?]

and then f(x) € [aﬁprN] (since u = [rr]). Applying the argument repeatedly, we see that f(90) C
ﬂizo[aibi]Wn(R) where (b;) is the sequence defined by by = V' and b;11 = pb; — N. Now b’ > %
implies lim b; = co. Injectivity follows.

11— 00
Let’s prove the second part of the proposition. Since p factors through p,, we certainly
have poob(Jn,00) C Pap(Jn,a). Conversely, we want to prove that if f : MM — W, (R)/[az?] is a
p-morphism, then there exists a p-morphism (necessarily unique) g : 9t — W, (R) such that g = f
(mod [a;b]). Assume first 9 € Freeé’: and pick a basis (e1,...,eq) of MM over &,,. Let A be a
matrix with coefficients in &,, such that:

(pler), .- pleq)) = (e1,...,ea)A
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and let X be a line vector with coefficients in W,,(R) that lifts (f(e1),..., f(eq)).

The commutation of f and ¢ implies X A = ¢(X) (mod [a3?]). Actually, the congruence holds
in [aia/] for some a’ > a. For the rest of the proof, fix some element « € R with valuation a’. By
Lemma 2.3.1.(2), [aia/] is the principal ideal generated by [a]. Therefore, one have XA — p(X) =
—[a]@Q with coefficients of @ in W,(R). We want to prove that there exists a matrix ¥ with
coefficients in [a7;’] such that (X +Y)A = ¢(X +Y). Let us search Y of the shape [3]Z with
B = ;% (which belongs to R because of valuations) and coefficients of Z in W,,(R). Our condition
then becomes:

(2:3.2) [B1ZA = [8]p(2) + [lQ

Using condition (2.1.1) and u" € E(u)"W,[u], we find a matrix B (with coefficients in &,,) such
that BA = «V. Multiplying (2.3.2) by B on the left and simplifying by [a], we get the new
equation:

(2.3.3) Z =N]e(Z)B+ QB
with v = P~ /uPN. Remark that vg(y) = a’(p—1) — N > 0; hence v € R. Now define a sequence
(Z;) by Zop = 0 and Z;11 = [y]e(Z;))B + QB. We have Z, 11 — Z; = [y]o(Z; — Z;—1)B. Since

vr(y) > 0, Z; 41 — Z; goes to 0 for the u-adic topology (which is separate and complete on W, (R))
when ¢ goes to infinity. Hence (Z;) converges to a limit Z which is solution of (2.3.3).

Finally, if 901 is just an object of Mod&" consider M’ € Freeg” and a surjective map f : M’ — 9.
Then ker f is in Modg" and sits in the following diagram:

T@n(m/) > Jn,a(m/) > Jn,b ml)

Ts,, (ker f)C I p(ker f)
All columns are exact (by left exactness of Hom) and the map on last line is injective (by first part
of proposition). An easy diagram chase then ends the proof. O

Remark 2.3.4. In general, p, p is not surjective (nor injective) even for a and b big enough. Counter
examples are very easy to produce: for instance, 9 = Gje equipped with p(e) = E(u)"e is
convenient.

2.4. What is the best choice for N7 Here we are interested in finding integers N (as small as
possible) such that u”¥ = 0 in W,,[u]/E(u)". As we have said before N = ern is always convenient.
If n = 1, it is obviously the best constant. However, it is no longer true for bigger n: the three
following lemmas could give better exponents in many cases. We do not know how to find the best
N in general.

In this paragraph, we will denote by [x] the smallest integer not less than z.

Lemma 2.4.1. We have u™N =0 in W, [u]/E(u)" for N = ep"~1 [o=].

Proof. Just remark that E(u)?" = u"" " (mod p"). O
Lemma 2.4.2. Assume E(u) = u® —p. Then u™ =0 in W,[u]/E(u)" for N =e(n+r —1).

Remark 2.4.3. If K/W{1/p| is tamely ramified, up to changing K by an unramified extension, we
can always select an uniformizer whose minimal polynomial is E(u) = u®¢ — p.

Proof. Up to performing the variables change v = u®, one may assume e = 1. We then have an

isomorphism f : K[u]/E(u)" — K", P (P(p),P’(p),...,%) whose inverse is given by
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2oy yzr1) =20 +x1(u—p) + - +2p_1(u—p)" L. In particular f(W[u]/E(u)") D W".
Moreover:

fl) = (pN,NpN‘l,..., <7,]f1

Conclusion follows. O

>pN—r+1) c pN—r-i-lwr _ pnwr

Lemma 2.4.4. There exists a constant ¢ depending only on K such that uY = 0 in W, [u]/E(u)"
for N =en+c(r—1).

Proof. The general plan of the proof is very similar to the previous one. We first consider the map

£ W[/pu)/E(u)” — K", P — (P(w),P'(w),...,w). It is W[1/p]-linear and injective.
Since both sides are W/[1/p]-vector spaces of dimension er, f is an isomorphism. Denote by

w € WI1/p|[u]/E(u)" the preimage of (m,0,...,0). The inverse of f is then given by the formula:
F @0,y m) = Xo(w) + Xi(@)(u — @) + -+ + Kooy (@) (uw — @)

where X; are polynomials with coefficients in W[1/p] such that X;(7w) = z;. Second, we would like
to bound below the “p-adic valuation” of f~1(wo,...,2,_1) when all x;’s lies in O. For that,
we remark that E(w) is mapped to 0 by f; hence it vanishes. Solving this equation by successive
approximations, we find that @ can be written Py(u) + Pi(u)E(u) + -+ + Pr_1(u)E(u)"~! with
Py(u) = u and:

E(Py(u) + Pi(uw)E(u) + -+ Pi_q(u)E(u)™1)

E(u)’

where P; are uniquely determined modulo E(u)"~%. Let F(u) € W[1/p][u]/E(u) be the inverse of
E'(u) and v an integer such that p"F(u) € W{u]/E(u) ~ Og. (Note that v = [v,(Dg wp/p)] is
convenient.) By induction we easily prove that p™P;(u) € W{u]/E(u)"~%, and then that Q(w) €
Wu]/E(u)" for all Q € pir=VvW[u]. Consequently f(W[u]/E(u)") D p"~D?O%. Finally, defining
c=ev+1and N =en+ c(r—1), we have:

fuN) = (WN,NT(N_l,...,( N

r—1
and we are done. O

E'(u) Pi(u)

(mod E(u))

)ﬂ'N_rJrl) e 7TN—T’—}-l . OTK I p(r—l)v+n . O}"{

2.5. Some quotients of W, (R). The aim of this last subsection is to study the structure of
quotients W, (R)/[az°] that appear in the definition of J,, . (see formula (2.3.1)). It will allow us
to derive interesting corollaries about the extension to a finite index subgroup of G of the natural
action of G, on T, (9N).

For a nonnegative integer s, let us denote by 6 the ring morphism R — Ox /p, x = (x(o), A N J)
2(®). We emphasize that it is not k-linear: it induces a morphism of k-algebras between R and
k ®k o+ O /p. For a nonnegative real number ¢, define:

a7 ={z € K/vg(x) > c} C Og.

Lemma 2.5.1. Let ¢ be a positive real number. For any integer s > log, (<), the map 05 induces
a Galois equivariant isomorphism of k-algebras

R/az" — k @p o0 O fa/7".

Proof. The map is clearly surjective. It remains to show that z = (z(®,z(),...) has valuation
greater than c if and only if vy (z(*)) > +5» which follows directly from % <. O

Proposition 2.5.2. Let ¢ be a positive real number. For any s >n — 1+ logp(ﬁ), 0s induces a
G-equivariant isomorphism of W,,(k)-algebras:

Wn(R) _ Wn(k) W, (k).0° Wn(of(/p)_

[agc] n [a;c/ps]
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Proof. Since 6; is surjective, the above map is also surjective. Let z = (z¢,...,2n—1) € W,(R)
and assume that (%) = (x(()s), . 5551)1) lies in [a >—C/p'} By an analogue of Lemma 2.3.1.(1), one
obtains vk (z; (s )) Hence, x( ) is in a>Cp /" Since logp(%l) =i +log,(£) <

n —1+log,(£) < s, we can apply Lemma 2.5.1 and deduce z; € [a;Cp ], i-e. vr(x;) > cp® for all

i. By Lemma 2.3.1.(1), it follows that = € [a7 az¢]. Thus, the map of the proposition is injective and
we are done. O

c(p— 1))

ep

Define increasing functions so and s; by so(c) = n—1+log, (<) and s1(c) = n—1+log,(
so(c) +log, (1 — 7) Recall that we have defined a = pTN (where N is an integer such that u”¥ =0

in Wy [u]/E(u)) and set Spmin = s1(a) = n —1+ logp( = ). If we choose N = ern, we just have
Smin =1 — 1+ logp(rn).

Proposition 2.5.3. Let n be a positive integer and M € Mod‘o’ . For any nonnegative integer
5> s1(c), the natural action of Gy on Wy (R) turns J,, (M) into a Z,|G)-module. Furthermore,
we have the following compatibilities:

o the action of G5 is compatible with the usual action of G on Jp (ON);
o if ' > s> s1(c), actions of Gy and G on J,, . are compatible;
o if ¢ >cand s> si1(c), then pe o Jpe (M) — T (M) is Gs-equivariant.

Proof. For the first statement, it is enough to show that G acts trivially on v € W, (R ) /laz¢] for
s = 1+4[s1(c)] (where [-] denotes the integer part). Put s’ = 1+[so(c)]. Since 0 <log,(;%7) <1, we

have s’ = s or ' = s+ 1. By Proposition 2.5.2, W, (R)/[az°] is 1som0rphlc to W, (Og/p)/laf >c/r” ]

Hence we have to show that g[my] — [my] belongs to [aj >e/p’ | for all g € G,. It is clear for
g € Gy (since the difference vanishes). It remains to con51der the case where s’ = s+ 1 and
g € Gy = Gsq1. Then gnsy1 = (1 + )1 where (1 + 1) is a primitive p-th root of unity. Let
us compute (gms41,0,...,0) — (7541,0,...,0) = (zg,...,2p—1) in W,,(Of). By writing phantom
components, we get the following system:

Lo =17 Ts41
zh +pr; =0

pnfl pn72 n—1
T + pxy 4+ +p" o1 =0

Using vk (n) = pfl, we easily prove by 1nduct10n on i that vi(x;) = - 5 pbﬂ . Thus v (z;) >
o= for all ¢ and (2o, ..., 2p-1) € [a>—°/p ] as expected.

Second part of proposition (i.e. compatibilities) is obvious. O
Remark 2.5.4. If ¢ > = the bound s;(c) that appears in Proposition 2.5.2 can be replaced by

s1(c —1). The proof is totally the same.

Theorem 2.5.5. For any M € Mod&" and any integer s > smin, Ts, (M) is canonically endowed
with an action of G (which prolongs the natural action of G ).

Proof. Just combine Propositions 2.3.3 and Proposition 2.5.3. O

Remark 2.5.6. Using Remark 2.5.4, it appears that we may replace spyin = s1(a) by s1(a — 1) in
previous Theorem. However, it won’t be useful in the sequel since sy, is really needed in Theorem
3.3.4.

3. TORSION SEMISTABLE (GALOIS REPRESENTATIONS

In this section, we use the theory of (¢, G)-modules to define .J,, ,(90) attached to p"-torsion

semistable representation T'. After establishing isomorphism (of Z, [G]-modules) between jna(sfn)
and J,, (M), we will show that J,, (M) ~ T as Gs,-modules for s > Spyin-
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3.1. Torsion (p, G)-modules. We refer readers to [14] for the definition and standard facts on
semistable representations.

We first review some facts on (@, G)-modules in [21] and extend them to p™-torsion case. We
denote by S the p-adic completion of the divided power envelope of W (k)[u] with respect to the
ideal generated by E(u). There is a unique continuous map (Frobenius) ¢ : S — S which extends
the Frobenius on &. Define a continuous W (k)-linear derivation N : S — S such that N(u) = —u.

Recall R = lim Og /p. There is a unique surjective continuous map ¢ : W(R) — O which lifts
the projection R —0 % /p onto the first factor in the inverse limit. We denote by Agis the p-adic
completion of the divided power envelope of W(R) with respect to Ker(). Recall that [x] € W(R)
is the Teichmiiller representative of = = (7;)s>0 € R and we embed the W (k)-algebra W (k)[u] into
W (R) via u +— [x]. Since §(x) = 7, this embedding extends to an embedding & «— S — Ay, and
0|s is the W (k)-linear map s : S — Ok defined by sending u to m. The embedding is compatible

with Frobenius endomorphisms. As usual, we write B, := Acs[1/p).

o0
For any field extension F/Q,, set Fpoo := |J F((pn) with (pn a primitive p™-th root of unity.
n=1

Note that Koo poo := |J K (7, (pn) is Galois over K. Let Gpoo := Gal(Koo poo /Kp<), Hx =
n=1

Gal(Koo p~ /Koo) and G := Gal(K o p /K). By Lemma 5.1.2 in [22], we have Ky N Ky = K,
G = Gpe x Hyg and Gpe =~ Z,(1). For any g € G, write e(g) = g(x)/z. Then €(g) is a cocycle
from G to the group of units of R*. In particular, fixing a topological generator 7 of Gpe, the
fact that G = G x Hy implies that e(7) = (€,)s>0 € R* with €, a primitive p*-th root of unity.
Therefore, t := —log([e(7)]) € Aeis is well defined and for any g € G, g(t) = x(g)t where x is the
cyclotomic character. We reserve ¢ for ¢(7).

For any integer n > 0, let t{"} = ¢"(Wq ) (#771/p) where n = (p — 1)G(n) + r(n) with 0 <
r(n) <p-—1and v;(z) = f—, is the standard divided power. Define subrings R, and R of Bl as
in §2.2, [21]:

Ri, = {x = Zfit{i},fi € S[1/p] and f; > 0 asi— +oo}
i=0
and R := W(R) N Ri,. Let LR = {z € R/vg(z) > 0} = a" be the maximal ideal of R. We

have exact sequences
0 — Wp(I4R) — W, (R) X8 W, (k) — 0and 0 — W(I,R) — W(R) % W(k) — 0

where v, are v are induced by the composite R — O /p — k, the first map being the projection
onto the first factor in the inverse limit. One can naturally extend v to v : B, — W(k)[%] (see the
proof of Lemma 2.2.1 in [21]). For any subring A of BX._ (resp. W,(R)), we write I, A = Ker(v)NA

cris

(resp. I, A = Ker(v,) N A) and I, := I, R. Now recall M,, stands for M/p™M.

Lemma 3.1.1. We have the following commutative diagram :

1

0 ——> Wo(I4R) —> W, (R) —> W, (k) —>0

o

0 I, R W(k) ——=0

such that both rows are short exact and all vertical arrows are injective.

Proof. By Lemma 2.2.1 in [21], we have a commutative diagram of exact sequences:

0——=I,W(R) W(R) =W (k) —=0

Y
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Modulo p™ and noting that I, W(R) = I, BL. N W(R) = W(I.R), we get

Cris

0——= W,(I[LR) — > W, (R) —> Wy (k) —= 0

]

[_;,_7” R Wn(k) —0

Now it suffices to show that the bottom arrow is left exact and the last two vertical arrows are
injective. The last one is obvious. To see the middle arrow is injective, it suffices to show that
("W (R)) N R = p"R. Note that R = Rg, N W(R). Let z € W (R) such that p"x € R C Ri,.
Then z € W(R) N Rk, = R. So p"z € p”ﬁ and (p"W(R))NR = p”R To see the bottom is
left exact, it suffices to show that I ﬂp”R p"Ii. But If = IRk, N R. Let # € R such that
plx e I, ﬂp"R Then x € I4 Rk,. Thus x € Iy Rk, N R = I and I ﬂp”R p"IL. g

As in Lemma 2.2.1 in [21], we see that R (resp R.,) is ¢-stable and G-stable subring of W (R)
(resp. W,(R)), G-action on R factors through G. Let (9, ¢) be a finite free or p"-torsion Kisin
module of height < r, set M := R ®yp,e M and consider the following composite

(3.1.2) 93’(26@693?%6@%693?%72@%697{:97{

where the first map is ¢ ® id. We claim that it is an injective (thus 9% can be always regarded as

a ¢(&)-submodule of M). Indeed, by Lemma 3.1.1, we have ¢(S,) — R, — Wy(R). Thus the
claim is clear if 91 is finite G-free or M is finite G,,-free. For a general M which is annihilated by
p", by the discussion in the end of §2.1, 991 can be written as a successive extension of finite free
G;-modules. Therefore one can reduce the proof of the claim to the following lemma.

Lemma 3.1.2. The functor M — R Rp,c M (resp. M — W(R) @y, M) is an exact functor
from the category of Kisin modules to the category of R-modules (resp. W(R)-modules).

Proof. We only prove the exactness of the first functor, the proof for the second being totally
identical. It suffices to prove that Tor® (9, R) = 0 for any Kisin module 9. Note that there
exists finite free Kisin modules £1 C £9 such that 9 = £5/£; (¢f discussion in the end of
§2. 1). Since R — W(R) is an integral domain and ¢ : W(R) — W/(R) is injective, we see
R ®p,e L1 — R @, Lo is injective. Thus Tor} (9N, R) =0. O

Let (9, ¢) be a Kisin module of height < r and M := R ®e,, M. Frobenius ¢ on M can be
extended to M semilinearly by ¢, (a ® ) = p5(a) @ pam(z).

Now we can make the following definition: a (¢, G’) -module of height < r is a triple (9, pom, G’)
where

(1

) ( 7909}1) is a Kisin module of height < r;

2) G is a R-semilinear G-action on 9 = R R, M;

3) G commutes with Pgy ON sm i.e. for any g € G, 9Ps = Psnd;
) regard 9 as a ©(6)-submodule in 90, then M C M=
) G acts on W (k)-module M := 9/I 9 ~ M /udN trivially.

A morphism f : (2, ¢, G) (zm/, NEARTE morphism f : (M, ) — (zm' ¢') of Kisin modules
such that R D f: MM — M’ is G-equivariant. If M = (93?, ®, G) is a (<p, G)-module, we will often
abuse notations by denoting 9 the underlying module R®%G M. A (¢, G)-module M := (M, ¢, G)
is called finite free (resp. p"-torsion) if 90 is finite &-free (resp. 9 is annihilated by p™).

Let 0 = (9, ¢, G) be a (¢, G)-module. We can associate Z,[G]-modules:

(
(
(4
(5

T(9m) := Homz (‘)ﬁ W(R)) if 9 is finite G-free.

and
T, (M) := Homp w(zﬁ?, W, (R)) if M is of p™-torsion.
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Here G acts on T(OM) (resp. T, (M) via g(f)(x) = g(f(g~'(x))) for any g € G and f € T(9m)
(resp. T?(im)). For any f € Te (M) (resp. T, (M)), set O(f) € Homz (M, W(R)) (resp. 0,(f) €
Homg (9, W, (R))) via:

(3.1.3) 0(f)(a® ) (resp. b, (f)(a® z)) = ap(f(x)) for any a € R,z € M.

It is routine to check that 0 : Te (9) — T'(IM) (resp. b, : T, (M) — T, (9MN)) is well-defined.
Denote by Repy,,(G) the category of G-representations on finite type Z,-modules which are

annihilated by some p-power, and Repg,, (G) the full subcategory of torsion semistable represen-

tations with Hodge-Tate weights in {0,...,7} in the sense that there exist G-stable Z,-lattices

Ay C As C V such that V is semistable with Hodge-Tate weights in {0,...,7} and T~ As/A; as

Zp|G)-modules. The following is the main result of this subsection.

Theorem 3.1.3. (1) Let M := (M, ¢, G) be a (go,é')—module Then 0 (resp. Hn) induces
a natural isomorphism of Zy|Geo]-modules 0 : Te (M) = T(IM) (resp. 6, : Ts, (M) =
T(900)). A

(2) T induces an anti-equivalence between the category of finite free (¢, G)-modules of height
< r and the category of G-stable Z,-lattices in semistable representations with Hodge-Tate
weights in {0,...,r}.

(3) Forany T € RepinT(G), there exists a torsion (¢, G)-modules M such that T,,(M) ~ T as
Zy[G]-modules for some n.

Proof. (1) If 9 is finite S-free then it has been proved in Theorem 2.3.1 in [21]. The proof of the

p"-torsion case is almost the same, except one need to check that 97 is a ¢(&)-submodule of m
via (3.1.2), which has been proved below (3.1.2).

(2) See Theorem 2.3.1 in [21].

(3) Let Ay C Az be G-stable Zy-lattices inside a semistable representation with Hodge-Tate
weights in {0,...,r} such that T~ As/A; as Z,[G]-modules. By (2), there exists an injection
of Kisin modules (resp. (@,é)—modules) i: Lo — £ (resp. i 8y s ﬁl) that corresponds the
inclusion Ay C Ay. Write M := 21/£2 (resp. M= £, /Qg) Apparently, there are a p-action and a
G-action on M induced from £; and £,. We claim that 9t ~ R@cp M as p-modules and (M, ¢, G)
is a (¢, G) modules. To see these, tensor R to the exact sequence 0— Ly — £ —-IM— 0. By
the proof of Lemma 3.1.2, we see that the sequence 0 — £, — g8 —R Rp,6 M — 0 is still exact.
Thus 9 ~ R ®p,& M as p-modules. Moveover, we have the following commutative diagram

0 £, & R®peM—>=0
0 Lo £1 m 0

So g-action and G-action on 9 commutates, Hg acts on M (as ¢(S)-submodule in (3.1.2))
trivially, and G acts on 9/I, 9 trivially. Thus M = (M, ¢, G) is a (¢, G)- module. Finally, to see
that T,,(9M) ~ T as Z,[G]-modules, it suffices to show that T, (9) ~ T'(£2)/T(£1) and we reduce
the proof to the following Lemma. O

Lemma 3.1.4. Let 0 — f}g — ﬁ‘,l — M — 0 be an ezact sequence of (¢, G)-modules with ﬁ‘,l,
£y finite free and MM annihilated by p™. Then we have an ezact sequence of Zy[G]|-modules 0 —
T(L1) = T(L2) — T, (M) — 0.

Proof. Let m be an integer not less than n. Consider the following commutative diagram:

0 P Ly Py m 0
0 £, £ m 0
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where the last vertical map is p”™ = 0. By Snake lemma, we have an exact sequence

(3.1.4) 0— M — (£2)m — (£1)m — M — 0.
Then we get a sequence of Z,[G]-modules
(3.1.5) 0= Tn (M) — Tn((£1)m) = Trn((£2)m) — T (9) — 0.

Since T ((£:)m) ~ (T(£:))m for i = 1,2, it suffices to show that the above sequence is exact. But
the underlying Kisin modules of the exact sequence (3.1.4) is exact. Since Tg is exact, we get an
exact sequence

0—Ts, ) = Ts, (£1)m) = Ts,, (£2)m) — Te,, (M) — 0.
Now the exactness of (3.1.5) follows from Theorem 3.1.3.(1). O

Remark 3.1.5. For a fixed T € Rep{®’(G), it may exist two different (¢, G)-modules 90, M’ such

that Tp,(9M) ~ T,(M’) ~ T. The classical example of this is that T = Z/pZ with the trivial
G-action and K = Q,((p).

2. Gs-action on T(&). Let T € Repi™’(G) be a p"-torsion representation, and T ~ A’/A
where A C A’ are G-stable Z,-lattices in a semistable representation V' with Hodge-Tate weights
in {0,...,r}. By Theorem 3.1.3, there exists (o, G)-modules & < £ such that T'(£) — T(£)
corresponds to the injection A C A’ and T}, (9M) ~ T where M := £/£'. Now write £, £, M the
underlying Kisin modules for £, &, 9 respectively. Set D := S[1/p] @,.¢ £ and recall ¢(g) := 9(7?)

for any g € G. §3.2 of [21] explains that there exists an unique W (k)-linear differential operator
N : D — D over N(u) = —u such that G acts on B}, ®sD ~ B}, @5 £ via

cris

(3.2.1) Zg a)vi(—log(le(9)])) ® N*(x), for any a € BE,, z € D.
In particular, recall ¢t := —log([e]) with e = §(T) and 7 is a fixed generator in Gpe. For any
z € £ we have 7(z) = 3 v(t) ® Ni(x). Let A C B, be a p-stable subring. Set
i=0

IMA = {a e Alp"(a) € ANFiII™BZ,, for all n > 0}.

By proposition 5.1.3 in [13], I™ W (R) is generated by ([e] — 1)™ and vg(e — 1) = g

Now, define sa(c) :=n — 1+ log,( (p 61)°) = s1(c) + 1. We have the following lemma:
Lemma 3.2.1. For any s > s2(c), g € Gs, and x € £
g(@) =z € ([az"] + p"W(R)) @5 £

where, in a slzght abuse of notations, we still denote by [a7;¢] the ideal of W(R) generated by all [x]
with © € af,

Proof. Note that the G-action on £ factors through G. So it suffices to consider the action of G’s,
which is the image of G, in G. By Lemma 5.1.2 of [22] applied to K, we see that Gy := Gspoo X Hp,
where G poo = Gal(K oo poo /K poo ). Note that Hy acts on £ trivially and G, p is topologically
generated by 77°. Thus it suffices to prove the proposition for g = 77°. Writing

p° , P’ ,
: P’ ; p°(p°—1 ;
P 1= E -1y = E — - 1)
' i—1(i>(T ) il (i_l)(T :
we see that it is enough to show

(r=1)(x) € ([az™] +p"*T*OW(R) @5 £
for all integer ¢ such that v,(i) > s —n, i.e. v,(i) >s—n+1.
Using formula (3.2.1), an easy induction on ! shows that

o0

(3.2.2) (r=D'@)=> > ,L', Tm(t) @ N™ ()

ip!e !
m=l \i1+-tij=myi;>1 !
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for any [ > 0 and x € D. In particular, (r — 1)!(z) € (IVBL, (Bl ®s D). Since z € £ and
W(R) @5 £ is G-stable, we get (7 — 1)!(z) € ({UW (R))(W(R) Rz £). So it suffices to show that
(le) = 1)F € [ap?] + pn—=+»OW(R) for any i satisfying v, (i) > s —n + 1. Write i = p?+s~"+ly
with v > 0 and p { m. From vg(e — 1) = %7, it follows that ([e] — P e [ap] + pW(R).
By induction (on v), we easily find ([ — 1)?"" """ € [a7F°] + p*T'W (R), which is exactly the
expected result. O

3.3. Comparison between jnc(ff)?) and J, .(9). Let T be a p"-torsion semistable representa-
tion and 9 an attached (¢, G)-module via Theorem 3.1.3.(3). We have the following definitions
and results similar to (2.3.1). For any non negative real number ¢, set

Jne(M) := Homg (M, W, (R)/[a77]).

ﬁnv@
and jnoo(E)jT) = Tn(i)jt)

For any ¢ < oo, jnc(sﬁ?) is a Zp[G]-module and, for any ¢ < ¢’ < oo, the canonical projection
induces a map per . : jn /(Dj”() — An7c(9ﬁt). Moreover, to each f € J, .(9), one can attach a
morphism 0, .(f) € Jy..(9M) defined by:

(3.3.1) (Va e R) (Ve €M) bO,..(f)(a®z) = ap(f(z)).

Proposition 3.3.1. For any nonnegative integer s > s3(c) = n—l—l—logp((p%)c), On.c: Jnc(M) —
Jn.o(9M) is an isomorphism of Zy[Gs]-modules.

Remark 3.3.2. Since sa(c) = s1(c) +1 > s1(c), Proposition 2.5.3 shows that J, .(9M) is endowed
with an action of Gs. Hence it makes sense to claim that 6, . is Gs-equivariant.

Proof. It is routine to check that 6,, .(f) is well defined and preserves Frobenius. Hence 6, . is also
well defined. Let’s first prove that it is bijective. Remark that ¢ : W,,(R)/[a3] = W, (R)/[az"]
is an isomorphism. It follows easily that 6, . is injective. For any fe jmc(?ﬁt), set f = flm
(recall that we regard 9 as a ¢(&)-submodule of M via (3.1.2)). Then f': M — W, (R)/[az"]
is ((&)-linear map and is compatible with Frobenius. Since ¢ : W,(R)/[a%°] ~ W,,(R)/[az""], we
can set f =@ 1(f") : M — W, (R)/[az]. It is finally easy to check that f belongs to J,, .(9) and
that 0, .(f) = f. Hence On,c is surjective, as required.

It remains to prove that 0, . is Gs-equivariant. Let g € G, o € R and z € M. Expanding the
definitions, we get g(0,,..(f))(a®@x) = ag(On.(f) (g (1®x))). Moreover Lemma 3.2.1 shows that
g~ (1 ® z) is congruent to 1 ® z modulo [a;7‘] and hence that these two terms have same image
under 6, .(f). Thus:

9 (@@ ) = agn(f)lg~ 1®12))) = ag(n(f)(1® 1))
= ag(e(f (@) = ap(g(f(2))) = On.c(9(f))(a @ )

and equivariance is proved. O

Recall that we have fixed an integer N such that ¥ = 0 in W[u]/E(u)" and defined b = %

and a = 1%]\71. Combining Propositions 2.3.3 and 3.3.1, we directly get the following.

Corollary 3.3.3. The morphism poop : Ty (M) — J5(IM) is injective and its image is pa.p(Jn.qa(9N)).

Theorem 3.3.4. With previous notations, the map 0,, : Te, (9M) = T,, (M) ~ T is an isomorphism
of Zy|Gs]-modules for all integer s > smin =n — 1+ log,(£).
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Proof. We already know that 6,, is bijective (Theorem 3.1.3.(1)). Now, consider the following
commutative diagram:

Te, (M) — 2 T, (90)

-

Tr,a(90) Poo,b
pa,,bj/

Jnp () % T b (90)

Note that $min = s1(a) = s2(b). Thus by definition of Gs-action on T, (90) (resp. by Proposition
2.5.3, resp. by Proposition 3.3.1), poc,q (resp. pap, resp. 6,;) is Gs-equivariant. Since Poop is
injective (Corollary 3.3.3) and Gs-equivariant, we deduce that 6,, is also G-equivariant as claimed.

O

We end this section by giving a proof of Theorem 1.3 of introduction. For convenience of the
reader, we first recall its statement:

Corollary 3.3.5 (Theorem 1.3). Let V and V' be two semistable representations of G with Hodge-
Tate weights in {0,...,r}. Let T (resp. T') a quotient of two G-stable lattices in V (resp. V')
which is annihilated by p™. Then any G -equivariant morphism f : T — T’ is Gs-equivariant for
all integer s > n — 1+ log, (nr).

Proof. Consider M (resp. M) some Kisin module such that Ts, (M) = T (resp. Ts, (M) =T).
We may assume that 9 and 9 are maximal in the sense of [8]. Then by Corollary 3.3.10 in loc.
cit., f comes from a morphism g : M’ — M. Using Theorem 3.3.4, one easily see that T, (g) = f
is Gs-equivariant. O

4. RAMIFICATION BOUND

In this section, we give proofs of Theorem 1.1 based on above preparations. Our strategy is
similar to those in [1], [10], [15] and [16]. Let n be a positive integer. Recall that we have defined
several constants, that are:

e N is an integer such that v’ = 0 in W, [u]/E(u)" (recall also that one may choose N =

ern);
. b:pjfl andazzf’le;
o so(a) = n— 1 +log,(£) = n+log, (= );

® Spin = S1(a) =s2(b) =n—1+ logp(%).

Note that if we have chosen N = ern, then sg(a) is nothing but the minority of s that appears
in Theorem 1.4. Let T = A/A’ be a quotient of two lattices in a semistable representation and
assume that T is annihilated by p™. Since we have a surjective map A/p™A — T, it is enough to
bound ramification for A/p"A. Hence, without loss of generality, we may assume that T is free
over Z/p"Z. By Theorem 3.1.3, there exists a (o, G)-module 9 such that T, (90) = 7. With our
extra assumption, 90 is finite free over &,,.

From now on, we fix an integer s > so(a). Remark that sg(a) > Smin so that we also have
S > Smin. Hence theory developed in previous sections applies. In particular, by Propositions 2.5.2
and 2.5.3, for all ¢ € [0, ep* " *![, we have a Gs-equivariant isomorphism

Wn(of(/p)
o]

(4.0.2) Tne(9M) = JEL (M) = Homs , (sm W, (k) @w,, (k) ,0¢
K

where the structure of G-module on W,,(Og/p) is given by u — 1 ® ms. Moreover, by Corollary
3.3.3 and Theorem 3.3.4

(4.0.3) Tlg, ~im pgp @ Jno(IM) — Jnp(ON).

Denote by L the splitting field of 7', that is, L = (K)X*(?), where p : G — GLg, (T) the attached
group homomorphism. Set Ly, = K, L.
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4.1. The sets J(S) E(im) Let E be an algebraic extension of K, inside K. By restriction, the
valuation vk induces a valuation on F and one may define, for all nonnegative real number c,
07" = {z € EJug(x) > ¢} and a3¢ = {z € E/vg(x) > c}. If ¢ belongs to the interval
[O ep® "L, we put

JEE(9) == Home (sm, Wi (k) @w, (i) 0= W) .

[ap""]
They are Zy,-modules, and if E/K is Galois, they are endowed with an action of G,. As usual, if
0<c<c <ep* "1 we have a natural morphism pf/, 0B Jr(fg, (M) — JELF (). Apparently
Jfsz(i)ﬁ) injects J,Ssik(zm) = Jr(fg(im)

The aim of this subsection is to show the following theorem.

Theorem 4.1.1. Notations as above. The natural injection pfl ). E(JT(LS)’E(ED?)) C Pab(Jn,a (V) is
bijective if and only if Ls C E.

Remark 4.1.2. By (4.0.3), pa,p(Jn,a(9)) is canonically isomorphic to T as a Z,[Gs]-module.

In order to achieve the proof, we will need to lift J,(ng(DT() at Og-level. We begin by defining
amap ¢ : Wn(OE) - Wn(OE) by

o(z) = (2, ..., 28 ).

Note that ¢ is not a ring homomorphism. Nevertheless one easily check that p([A]z) = [M]p(z)
for A € O and z € W,,(Og) and ¢ is G4-equivariant.

Remark 4.1.3. If A is any ring, one can always define Frobenius ¢ : W(A) — W(A) by w,(é(z)) =
Wmt1(z), Ve € W(A), where wy, () is the m-th ghost component of . Then ¢ can be proved to be
a ring homomorphism (see p.14 in [17]). Unfortunately, such Frobenius does not preserve the kernel
of natural projection W(A) — W, (A) unless A has characteristic p. Hence it is not well-defined
on W, (A) if A has characteristic 0.

Recall now that we have assumed that 90 is finite &,,-free. Select a basis (e1,...,eq) of M
and write ¢(e1,...,eq) = (e1,...,eq)A with A € My(&,). As discussed in §2.3, there exists
B € My(6,,) such that AB = uNI. Let A and B be matrices in Mq(W,,(Of.)) that respectively
lifts images of A and B under the ring homomorphism &,, — W,,(Ok,/p), u — 75, A — o *(A)
(A € W,(k)). Apparently, AB = [r,]V (mod W, (pOk,)). Thus, there exists a matrix R with
coefficients in Wy, ([az"]) such that AB = [n,JN(I + R) (where I is the identity matrix). Noting
that I + R is invertible, one get AB(I + R)~" = [r,]VI. Hence, up to replacing B by B(I + R)~!
one may assume that AB = [r,|V1. Finally define a set

S)E _{ 21317..., WTL(OE)d/(gO(jl)’7@(£d)):(£177id)14}
The natural projection W, (Op) — Wy(Op/p) — Wn(Or/p)/[a7"/"] induces a map A
JEE o) — T80 (om).

Lemma 4.1.4. [7(3)’ is injective and its image is p( =) E(Jfft)lE(Sm))

s)HE

Proof. During the proof, if z is any element in W, (Og), we will denote by 2V € Op its i-th
component. By the same way, we define Z() for a matrix Z with entries in W,,(Og). Also, if Z is
a matrix with entries in O, we will denote by vk (Z) the smallest valuation of coefficients of Z.

We first show p( D ig an injection. Assume that X and Y are in jy(f)E(i)ﬁ) such that p ( )E (X)—
ﬁ}() ) E(Y) =0. Then Z=X-Y € [aj ~b/p? |+ W, (pOg) = [a;b/ps]. We need to prove that Z =0.
Assume by contradiction that it is false and consider m the smallest number such that Z(™ =+ 0.
Define W := ZA = o(X) — o(Y) = o(Y + Z) — o(Y). Easy computations show that W) = 0 for
1 < m and

(4.1.1) Wwim) — i (%Z) (Y(m))p*i(Z(m))i'
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where the multiplication is computed component by component. If 1 < i < p, we have
" ((p) <Y<m>>pi<z<’”>>i> > e+ oxe(20) > Np™ ™' 4 g (20)

and, using vy (Z™) > bp™ 1% (recall that Z € [ap, b/p’ ]), we find
w((Z)P) > (p = Dbp™ 75 o (Z) = Np™ 175 o (20),

Hence each term in RHS of (4.1.1) has valuation greater than Np™ =5 +uv (Z(™). So v (W ™) >
Np™ 175 4 v (Z(™). But, on the other hand, comparing the m-th component of WB = [r,]N Z,
we get v (W) < Np™ =175 4 v (Z(™). This is a contradiction and injectivity follows.
Let us now prove the second statement. Remark first that for all ¢ € [0,ep* " "], we have
W.(Or/p)/lag >elv? | > W,(Ok)/lag 2elv? ] and hence that Jﬁsz(im) can be identified with

{(F1,.., %) € Wa(OR)*/ (9(F1), .., p(4)) = (F1,...,8a)A (mod [a;7"])}

modulo [azc/ps]d. Let X = (Z1,...,24) € W,(Og)? be an solution as above. We have equation
p(X) = Xfl + Q’ with coefﬁcients of @ in [a >a/ps] Actually, the congruence holds in [aia/] for
. Note that 7= > o’ implies that W,(pOp) C [a %a,]. For the
rest of the proof let a € (’)E be an element of Valuatlon a’. By the similar argument as in Lemma

2.3.1.(2), [o7 } is the principal ideal generated by [a]. Therefore, one have p(X)— X A = [a]Q with
the coefﬁc1entb of Q in W,,(Of). We want to prove that there exists a matrix Y with coefficients in
[ag, b/v ] such that (X +Y)A = (X +Y). Let us search Y of the shape [3]Z with § = ~% (which
belongs to O because of valuations) and coefficients of Z in W,,(Og). Our condition then becomes
(X +[8]2)A = o(X +[B]Z). Multiplying B on both sides and noting that [r,] is a non-zero divisor
of W,,(Og), we need to prove that the following equation has a (necessarily unique) solution:

(4.1.2) ¥ X + [V I81Z = (X +[8)2)B.

Let us prove by induction on n. If n =1, set Zo = 0 and Z; 1, = 7. V3~ (o(X + 52)B — 7N X).
To see that Z;11 is in O, note that

o(X 4 B82Z)B—7NX = (X +6Z,)PB—nNX
-1
— (P(X)B—7N¥X)+ S () XP(B2) B + pP(2)P B
=1

Since o(X)B — 7V X = aQB, vi (7N B) < vk (a) < vk (p) and (p — Vg (3) > vk (), we see
that Z;11 is in Og. Note that

Ziii—7 = w7V N e(X +82) — o(X + BZ1-1))B
= = Vp” 12( )Xp B2 - Zi_,)B.

Since vi (p) > v (7 3) and (p—1)vk (B) > vi (7)), we see that v (Zi41—2;) > v+vi(Z1—Z1-1),
where v = min(vg (8), vk (87 177 Y)) > 0. Hence Z; converge to Z and we solve the equation
(4.1.2) for n = 1.

Now assume that equation (4.1.2) has a solution for n < m — 1, consider the n = m case.
Recall that z() € Op represents the i-th component of z € W,,,(Og). Set Zy = (Z(()O), e Z(()m_l))
where Z\™ ™" = 0 and (Z{”,..., Z{™ ) is the solution of (4.1.2) in n = m — 1 case. Now set
Ziy1 = [ms] N8 H@(X + [8]2)B — [7s)N X). Since (Z(()O), . Z(m_Q)) is the solution of (4.1.2)
in n =m — 1 case, we see that Zl(z) 7% for all | and i = 0,. — 2. Now it suffices to check

21
that Z;11 has coefficients in W,,,(Og) and Z; converges.

Since (X +[5]Z;) = o(X)+¢([8]Z1) in Wi (Op/p), we have (X +[5]Z)) = o(X)+¢([f]Z)+C"
with coefficients of C’ in W,,,(pOg). Since W,,,(pOg) C [¢]W,,(Og), we can write C’ = [a]C with
coefficients of C' in W,,,(Og). Hence o(X +[5]Z1)B — [r]V X = (o(X)B — [1,]N X) +[8]P0(Z)) B+
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[]CB = [a]QB + [B]P¢(Z)B + [a]CB. Since (p — 1)vg(B) > vi(ml), we see that Z;1; is well

CB.
defined. Now [m,]V[8](Zis1 — Z1) = (o(X +[8]Z)) — o(X + [8]Z;_1)) B = W B, where
= e(X+[12) — (X +[6]Z1-1)
= o(X+ 81211 + [B1(Z1 — Zi-1)) — p(X + [8]Z1-1)
(V +181(Z1 = Zi1)) — (V)

with V = X +[6]Z;_;. Since Zl(i) =79 forallland 0 < i < m—2, WO =0fori=0,...,m—2

= 4141
and
p

wem =5 (‘”) (Vom0 "z — Z{m )

i=1
Hence v (7N 8)P" ) + UK(ZZ(_TI_U - Zl(m_l)) > v (BP") + vK(Zl(m_l) - Zl(inl_l)) if i = p and
o (w0 ) + or (2T = 207)) 2 oaelp) + vwe(B) + o (277 = 277
if1<i<p—1. Since (p— vk (B) > vi(7) and v (7N B)P" ) < vk (p), we get
o (20D Z 207N > g (20D — g0,

where v = min(vg (3), vk (8P~ 17;7Y)). Hence Z; converges and we are done. O

Proof of Theorem 4.1.1. We have Gs-equivariant bijections of sets:

~7(LS)’R(EIR) ~ pij(ijg(fm)) by Lemma 4.1.4 applied with F = K
~  pob(Jnp(MM)) by Formula (4.0.2)
~ Tla. by Proposition 2.3.3 and Theorem 3.3.4.
Taking fixed points under Gal(K/E), we get a natural bijection J,st(zvt) ~ TCal(K/E)  Hence
again by Lemma 4.1.4, TG(K/E) ~ p((lsg)E(J,(Ls()lE(S)JT))7 from what the theorem is easily deduced.

O

4.2. Proof of Theorem 1.4. Recall that L, = K L with L the splitting field of 7. We are now
ready to bound the ramification of Ls. To do this, we need to recall the property (Pf:/ N) described
by Fontaine (Proposition 1.5, [10]). But before that, in order to fix notations, we would like to
recall some definitions about ramification filtration.

Let Fy/F, be a Galois extension of p-adic fields, with Galois group G. For all nonnegative real
number A, we define a normal subgroup Gy of G' by

Gy ={oc€G/vp(o(z) —z) =\, Vz € Op }

where vp, is the valuation normalized by vg, (F}) = Z and Op, is the ring of integers of F;. We
underline that we use here conventions of [10] and that they differ by a shift with conventions
of [24], Chap. IV. By definition Gy is called the lower ramification filtration of G. Now, let
0 /R ¢ [0, 4+00[— [0, 400[ be the function defined by

A Card G
ar (t) dt

A) = ———=dt.
<pF1/F0( ) 0 CardG(l)

It is increasing, continuous, concave, piecewise affine and bijective. Let ¢ p, /p, denote its inverse
and set G = G(wFl/FO (w)): it is the upper ramification filtration. Finally call Ap, s, (resp. pp, /r,)
the last break in the lower (resp. upper) ramification filtration of G, that is the infimum of A (resp.
p) such that Gy =1 (resp. G =1). Obviously LE Ry = P Fy (AR Ry )

We refer to [24], Chap. IV for basic properties of these filtrations, and especially for Herbrand’s
theorem that allows us to extend upper ramification filtration to infinite algebraic extension. In
particular, G is itself filtered by normal closed subgroups Gg?). Note that pp /m, = inf{u €

Rt/ Ggﬁ;) C Gr, } where GF, and G, denote the absolute Galois groups of Fy and F} respectively.
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Proposition 4.2.1 (M. Yoshida). Let F} and Fy be finite extensions of K with Fy C Fy C K and
Fy is Galois. For any positive real number m, consider the following property

For any algebraic extension E over Fy,
(PEVEoY L if there exists an Op,-algebrahomomorphism O, — Og/az™",

then there exists a Fy-injection F; — FE.

Let ep, /i denote the ramification index of Fo/K. Then

BR/Bs _ g {m € R* / the property (PI/¥0) holds}.
€ry/K
Proof. See Proposition 3.4 in [27]. O

We will also need the following corollary:

Corollary 4.2.2. If (P, Fl/FO) holds for a positive real number m, then v (Dp, /p,) < m.

Proof. If Fy /Fy is unramified, v (Dr, /r,) = 0 and the corollary is obvious. If not, Proposition 1.3
of [10] shows that ep, kK (Dr, /r,) < KF, /7> and we are done. O

We claim that (PL /K *) holds for m = ap"~'7%. To see this, pick f : Op, — Og/az™ an
Ok, -algebra homomorphism. Obviously, for any real number ¢ € [0,m], f induces a map f. :
OL /Cl ¢ — OE/U.EC.

Lemma 4.2.3. (1) For any ¢ <m, f. is injective.
(2) For any c < a, fepn—1-s induces an injection

Wa(Or, /p)/[a77"] = Wa(Or/p)/laz""].

Proof. (1) It is the same as the proof of Lemma 4.4 of [15].
(2) Using an analogue of Lemma 2.3.1.(1), one easily proves that natural projections Oy, /p —

n—1—s

o5
0, /a>6p and Op/p — Op/a;™ induce isomorphisms

W(Or, /P07 =~ Wa(Or,/az™" ) /[a7"]
Wn(O/p)/la"] =~ Wu(Or/az™" )/laz").

Hence f.pn-1-s indeed induces a map

l

Wa(Or, ;") /107" ] = Wa(Opfaz™ ") /lay""]

and checking injectivity is now straitforward using (1). O

Thus by Lemma 4.2.3, we get injections:

s),Ls s s),E , s _ ~
P (I () = py E (TSNP EM) < pCH I OM) = iy (Jna () = T
the first one being induced by f (which is obviously compatible with Frobenius since it is a ring
homomorphism). By Theorem 4.1.1, LHS is isomorphic to 7. The composite map is then an
injective endomorphism of 7. Consequently, it is an isomorphism because T is finite. It follows
that p(g) E(J,(H)IE(E)JT)) — p((l Z))(J(g) (7)) is bijective and then, applying again Theorem 4.1.1, we
get Ly C E. Property (Pm /K °) is proved.

By Proposition 4.2.1, one then get ur, /x, < ex /km = Np”  Taking N = ern, one obtain

p—1-
Theorem 1.4. (Recall that ern is not in general the best value one can choose (expect for n = 1).
See §2.4 for a discussion about this.)
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4.3. Proof of Theorem 1.1. Consider « and 3 such that ﬁ = p®f with o € N and % < B <1
(If N = ern, then a and §3 are those of Theorem 1.1). From now on, we fix s = n+«. One certainly

have s > so(a) = n + log,( ﬁ) as it was assumed in the beginning of this section.

It is very easy now to bound valuation of Dy . We just write:

1 1
vK(DLS/K) = 1+es—E+vK(DLS/KS)<1+es—2¥+ap"_1_s
1 a+n—s 1
= 1""_68_?"_6]) (ﬁzl—i_e(n—"_a—i—ﬁ)_prﬂra

where the inequality v (D, /i) < ap™ '~ follows from Corollary 4.2.2 and the fact that (PaLpSn/ _Iis_)

holds as it was seen before. Now, since L is a subextension of L, we have vx (Dr /) < vk (Dr_/x)
and the previous bound works also for v (Dy /). Taking N = ern, we get Theorem 1.1.(2).

To bound pp,/f, we first need to extend the definition of ¢p, /r, and ¥ g, /p, to arbitraty finite
extensions F /Fy (non necessarily Galois). There are several standard ways to do this. For example,
following [26], §1.2.1, one can put

”w
(1) = / GV GG at

(where G, and Gp, stands for absolute Galois groups of Fy and Fy respectively) and remark
that this formula agrees with the previous definition when Fy/Fy is Galois. Set also g, /g, =
(Yr,y r,) . We have an usual transitivity formula: if Fy C Fy C F are finite extensions of K,
then vp,/p, = ©r, /R, © PFy Py -

Lemma 4.3.1. Let Fy C Fy be two finite extension of K. Then
G%) — Gp N G(FiFl/FU(#))
for all u > 0.
Proof. Let N be a normal extension of Fy, with 'y C N. For all A > 0, one have Gal(N/F)y) =
Gal(N/F1)NGal(N/Fp)y), that is Gal(N/Fy)~/m (M) = Gal(N/Fy)NGal(N/ Fp)#~x/70 M) Putting

{t = ¢n,r, (A) and using transitivity formula, one get Gal(N/F;)#) = Gal(N/F)NGal(N/ Fy)(#ri/ro (i),
Taking projective limit over all Galois extensions N, we get the desired property. 0

By §4.2, we know that Gé’” C Gy for all p > ];[fp:. Applying previous Lemma, we have Gs N

G%KS/K(M)) also lies in GG,. Consequently
N n
(4.3.1) Br/k < Hr,/k < max <”K5/K’ PK /K (pfl)> )

By Remark 5.5 of [16], we know that p; := pug, x = 1+ e(t + p%l) for all t > 1. Using that
subextensions of K are exactly the K;’s for 0 <t < s, one easily see that ¢y, has the following
shape

s
Hs—1

u3

H2

H1

0 A1 Ao A3 As—1 As
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1

where successive slopes are 1, p%. One can then compute A¢’s (0 < ¢ < s) and one find

D=

7p27"'7
M =1+ ;—ftl. Since ¢ /K is concave and its last slope is p%, one get
A=A 1 A
SDKS/K(A)S/I'3+ ps :14’687}4’];.

Finally, taking N = ern and using (4.3.1), one obtain Theorem 1.1.(1) (remember s = n + « and
2 = pB).

5. SOME RESULTS AND QUESTIONS ABOUT LIFTS

In this last section, we discuss how to fit our main theorem into the investigation of the fol-
lowing fundamental question: when a p™-torsion Galois representation comes from geometry? As
the question is very difficult to answer, we would like to first consider the relatively easier one:
when a p"-torsion of (local) Galois representation comes from semistable representations? In the
following, we formulate the question precisely, provide some partial results and raise several re-
lated questions. More precisely, we would like to investigate when a given torsion representation
of Gk can be realized as a quotient of two lattices in a semistable (or even crystalline) represen-
tation, eventually with prescribed Hodge-Tate weights. Denote by Repy (Gk) (resp. Repo, (Gk),
resp. Repy,n7(Gk)) the category of all Z,-representations of G that are finitely generated and
free (resp. annihilated by a power of p, resp. annihilated by p™) as a Z,-module. For any full
subcategory C of Repy, (Gk), one can always raise the following question

Question 5.1. For any T' € Repy,,(Gk) (vesp. T' € Repy/,nz(Gk)), does there exist A and A’ in
C such that T~ A/A'?

Obviously if C is stable under subobject (which will in general be true in interesting examples),
it is enough to find L together with a surjective G i-equivariant morphism A — T'. In the sequel,
we will call a lift such a morphism A — T'. If C is moreover stable by direct sum, the problem can
be further reduced as follows.

Proposition 5.2. Assume that C is stable under subobjects and direct sums. Assume also that
any T € RepZ/pZ(GK) admits a lift A € C. Then the answer to Question 5.1 is “yes”.

Proof. We make an induction on n. The case n = 1 is obvious. Now assume the statement is valid
for m < n — 1. Let T be a representation annihilated by p™. Then we have an exact sequence
0—=T —T —T"— 0, where T' = p" T and T = T/T". Since T"” is annihilated by p"~!, by
induction, there exists an A € C that lifts T". Denote the surjections A — T” and T — T" by f and
g respectively. Set M := T xpn A = {(z,y) € TxA/g(x) = f(y)}. Then we have an exact sequence
0—T — M — A — 0. Since A is free over Z,, the sequence is split as Z,-module. In particular
pM ~ pA @ pT’ = pA is finite free over Z,. Now we have exact sequence 0 — pM — M — M’ — 0
with M’ = M/pM. Since M/pM is annihilated by p, there exists an A’ € C such that A’ lifts
M/pM. Set N := M X A'. Tt sits in the exact sequence 0 — pM — N — A’ — 0, and since pM
and A’ are both finite free, IV is also. Note that N is a lift of M hence a lift of 7. Now it remains
to show that N is in C. To see this, note that N := M X A’ C M x A’. Then pN C (pM) x pA’.
But pM ~ pA € C. Hence pN C pA x pA’ belongs to C. O

We also have a kind of descent property:

Proposition 5.3. Assume that the answer of question 5.1 is “yes”™. for the category C = Ck.

Let L/K be a finite extension. Denote by Cy, the category whose objects are subrepresentations
of restrictions to G, of objects in Cxc. Then, for any T' € Repyo,(Gr) (resp. T € Repy,nz(GL)),
there exist A and A’ in Cy, such that T ~ A/A'.

Proof. By a previous remark, it is enough to show that T" admits a lift in C. Let Ty := Indgf( (T).
By assumption, there exists a lift f : Ag — Ty with Ag € Cx. Consider the Z,-linear map
pr: Zy|Gk] — Zp|G1] sending g € G, to itself, and g € Gk, g € G to 0; it is surjective and
G 1-equivariant for actions on both sides. Tensoring pr by 7', one get a GGy -equivariant surjective
morphism Ty — T which, composed with f, gives the desired lift. O
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Nevertheless, of course, the answer to Question 5.1 is in general negative. For instance, we have
the following theorem that can be seen as a consequence of ramification bounds obtained in this

paper.

Theorem 5.4. For any r > 0, answer to Question 5.1 is “no” if C is the category of lattices in
semistable representations with Hodge-Tate weights in {0,...,r}.

Proof. There are several ways to prove this theorem. Below, we give two different methods.

The first one is based on results shown in this paper. Select a Galois extension F/K which
has very large ramification and let T be the regular representation with Z/p"Z-coeflicients of
Gal(F/K). Then the splitting field of T' is F', and Theorem 1.1 shows that 7" cannot in general be
lifted a semistable representation with Hodge-Tate weights in {0, ..., r}.

The second proof we would like to give uses the main result of [20] which states that a finite
free Z,-representation A of G is a lattice in a crystalline (resp. semistable) representation with
Hodge-Tate weights {0,...,r} if and only if A/p"A is a quotient of two such lattices for any n.
Therefore, starting from a representation A such that A ®z, Q, is not semistable, there must exist
an integer n such that A/p”A gives a counter-example to Question 5.1 (with the category C of the
theorem). O

Unfortunately, the above proof does not help us to solve the following more interesting question:

Question 5.5. Has Question 5.1 a positive answer when C is the category of all lattices in
semistable representations?

In fact, to check the above question, it suffices to look at representations annihilated by p (by
Proposition 5.2) and we may assume that KX = Q, (by Proposition 5.3). Here are some partial
results in favor of a positive answer to Question 5.5.

Proposition 5.6. Let T be a torsion representation of Go. Then T is a quotient of two repre-
sentations arising from finite free Kisin modules.

Proof. By a similar argument as in proof of Proposition 5.2, we may assume that 7' is annihilated
by p. Let M be the étale p-module over k((u)) attached to T (see for instance [11], A. 3). Since
any torsion Kisin module can be written as a quotient of two free Kisin modules, it is enough to
show that M admits a submodule 9 which is a Kisin module of height r. Let (eq,...,eq) be a
basis of M and A be the matrix with coefficients in k((u)) such that

(pler),...,po(eq)) = (e1,...,eq)A.

Since changing all e;’s in ue; changes A in uP~! A, one may assume that A has coefficients in k[[u]].
Furthermore, the étaleness of Frobenius on M exactly means that A is invertible in k((«)). Hence
det A does not vanish. Finally, we choose r such that det A divides u" (that is r > Lval,(det A))
and we are done. O

Theorem 5.7. Any tamely ramified Fy-representation of Gx can be written as a quotient of two
lattices in a crystalline representation with Hodge-Tate weights between 0 and 1 + E(p—gl)

Remark 5.8. In particular, the answer to Question 5.5 is yes if T' is tamely ramified and annihilated
by p.

Proof. In a preliminary version of this paper, the authors gave a proof based on some computations
in p-adic Hodge theory, making in particular an intensive use of results of [19]. The following
simplier argument is due to an anonymous referee.

Putr =1+ E(%) and denote by I the inertia subgroup of Gg. Let T be a tamely ramified
representation of Gi annihilated by p. Since the tame inertia group is procyclic of order prime
to p, T|r splits as a direct sum of irreducible representations. By [24], §1.7, every irreducible
representation of I is isomorphic to

Fpa (65°07" -+ 03°5")

where 6;’s are fundamental inertia character of level d (see loc. cit.) and n;’s are some integers in
{0,...,p—1}. Hence, T'|; can be written as a tensor product of at most r irreducible representations
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T; of T whose tame inertia weights are between 0 and e. By a classical result of Raynaud (see [23]),
all T; come from finite flat group schemes. Using the fact that any finite flat group scheme can
be embedded in a p-divisible group, one construct a crystalline lift of 7; with Hodge-Tate weights
in {0,1}. Taking the tensor product of all these lifts, one get a crystalline representation A with
Hodge-Tate weights between 0 and r together with a surjective I-equivariant morphism f: A — T
(which certainly factors through L/pL). Since A/pA and T are finite dimensional over F,, they
are finite and f is Ggs-equivariant for a finite Galois unramified extension K’ of K. Consider the
map
Indg® A = Z,[Gk) ®z,i6,, ) A= T, [0]@x— of(w).

It is apparently G g-equivariant and surjective: it is a lift of 7. Furthermore, the restriction of
Indg?A to Gk is a direct sum of copies of A, and hence is crystalline with Hodge-Tate weights

in {0,...,7}. Since K'/K is unramified, also is Indg’;/A and we are done. O

REFERENCES

[1] V. Abrashkin, Ramification in étale cohomology, Invent. Math. 101 (1990), no. 3, 631-640
[2] C. Breuil and W. Messing, Torsion étale and crystalline cohomologies, in Cohomologies p-adiques et applications
arithmétiques II, Astérisque 279 (2002), 81-124
[3] C. Breuil, Construction de représentations p-adiques semi-stables, Ann. Scient. ENS. 31 (1997), 281-327
[4] C. Breuil, letter to Gross, December 3, 1998
[5] C. Breuil, Une application de corps des normes, Compositio Math. 117 (1999), no. 2, 189-203.
6] C. Breuil, Schémas en groupes et corps des normes, available at
http://www.ihes.fr/~breuil/publications.html, 1998
[7] X. Caruso, Conjecture de linertie modre de Serre, Invent. math. 171 (2008), 629-699
[8] X. Caruso and T. Liu, Quasi-semi-stable representations, Bull. Soc. Math. 137 (2), 2009, p. 185-223
[9] J.-M. Fontaine and G. Laffaille, Construction de représentations p-adiques, Ann. Sci. Ecole Norm. Sup. (4) 15
(1982) no. 4, 547-608
[10] J.-M. Fontaine, Il n’y a pas de variété abélienne sur Z, Invent. Math. 81 (1985), 515-538
[11] J. M. Fontaine, Reprsentations p-adiques des corps locauz, Grothendieck Festschrift II, (1991), 249-309
[12] J.-M. Fontaine, Schémas propres et lisses sur Z, in Proceedings of the Indo-French Conference on Geometry
(Bombay, 1989), 43-56, 1993
[13] J.-M. Fontaine, Le corps des périodes p-adiques, Astérisque 223, Soc. math. France (1994), 59-111
[14] J.-M. Fontaine, Représentations p-adiques semi-stables, with an appendix by Pierre Colmez, Astérisque 223,
Soc. math. France (1994), 113-184
[15] S. Hattori, On a ramification bound of semi-stable mod p representations over a local field, preprint
[16] S. Hattori, On a ramification bound of torsion semi-stable representations over a local field, J. Number Theory
129 (2009), No. 10, 2474-2503
[17] M. Hazewinkel, Witt vectors. Part 1, avaliable at http://aps.arxiv.org/ftp/arxiv/papers
/0804/0804 .3888. pdf
[18] M. Kisin, Moduli of finite flat group schemes and modularity, Ann. of Math. (2) 170 (2009), No 3, 1085-1180.
[19] M. Kisin, Crystalline representations and F'-crystals, Algebraic Geometry and Number Theory, Drinfeld 50th
Birthday volume, 459-496
[20] T. Liu, Torsion p-adic Galois representation and a conjecture of Fontaine, Ann. Sci. Ecole Norm. Sup. 40
(2007), No. 4, 633-674
[21] T. Liu, A note on lattices in semi-stable representations, Math. Ann. 346 (2010), No. 1, 117-138.
[22] T. Liu, Lattices in semi-stable representations: proof of a conjecture of Breuil, Compositio Math. 144 (2008),
61-88.
[23] M. Raynaud, Schémas en groupes de type (p,...,p), Bull. Soc. Math. France 102 (1974), 241-280
[24] J.P. Serre, Corps locauz, third edition, Herrmann (1968)
[25] T. Tsuji, p-adic tale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. math.
137 (1999), 233-411
[26] J.P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann.
Sci. Ecole Norm. Sup. 16 (1983), no. 1, 59-89
[27] M.  Yoshida,  Ramification of local fields and Fontaine’s property (Pm),  available at
http://arxiv.org/abs/0905.1171

IRMAR, UNIVERSITE RENNES 1, CAMPUS DE BEAULIEU, 35042 RENNES CEDES, FRANCE.

E-mail address: xavier.caruso@normalesup.org

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE,47906, USA.

E-mail address: tongliu@math.purdue.edu,



